

ENVIRONMENTAL AUDIT, INC. @

1000-A Ortega Way, Placentia, CA 92870-7162 714/632-8521 FAX: 714/632-6754

email:bmecham@envaudit.com

July 23, 2012

EAI Project No. 1576

Mr. Henry Jones California Regional Water Quality Control Board Los Angeles Region 320 W. 4th Street, Suite 200 Los Angeles, CA 90013

SUBJECT: REQUEST FOR CLOSURE AND

SECOND QUARTER 2012 GROUND WATER MONITORING REPORT

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

(RWQCB SCP Case No. 1238)

Dear Mr. Jones:

Pursuant to requirements of the California Regional Water Quality Control Board, Los Angeles Region (RWQCB) an electronic copy of the Environmental Audit, Inc. (EAI) report for the above referenced site titled "Request for Closure and Second Quarter 2012 Ground Water Monitoring Report," dated July 23, 2012, is hereby transmitted to the RWQCB. A hard copy of the report will follow via U.S. Mail.

Please call me at (714) 632-8521, ext. 226 or Steven Bright at ext. 224 if you have any questions.

MECHAM

No. 5649

Sincerely,

ENVIRONMENTAL AUDIT, INC.

Brent H. Mecham, RG Project Manager

BHM:SAB:pje

attachment

cc: Larry Patsouras (w/attachment)

REQUEST FOR CLOSURE AND SECOND QUARTER 2012 GROUND WATER MONITORING REPORT

11630-11700 Burke Street Santa Fe Springs, CA 90670 (RWQCB SCP Case No. 1238)

Prepared for:

LARRY PATSOURAS 11700 Burke Street Santa Fe Springs, CA 90670

Submitted to:

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION 320 W. 4th Street, Suite 200 Los Angeles, CA 90013

EAI Project No. 1576

July 23, 2012

Prepared by:

ENVIRONMENTAL AUDIT, INC.®

1000-A Ortega Way Placentia, CA 92870 (714) 632-8521 = Phone (714) 632-6754 = Fax

TABLE OF CONTENTS

Section	n		Page
1.0	INTR	RODUCTION	1
	1.1	BACKGROUND INFORMATION	1
	1.2	SCOPE OF WORK	1
2.0	SUM	MARY OF PRIOR INVESTIGATIONS	2
	2.1	PHASE I SITE ASSESSMENT.	2
	2.2	PHASE II SITE ASSESSMENT	2
	2.3	SUPPLEMENTAL SITE ASSESSMENTS	3
	2.4	REMOVAL OF UNDERGROUND STORAGE TANKS	4
	2.5	REMOVAL OF STORM WATER CLARIFIER	4
	2.6	SOIL REMEDIATION – 2006	4
	2.7	CLOSURE OF SUBSURFACE UNITS – 2009	6
	2.8	REMOVAL OF HYDROCARBON IMPACTED SOIL TO A MINIMUM	
		DEPTH OF 13 FEET BGS AND REMOVAL OF SUBSURFACE UNIT 6 - 2010	
	2.9	SOIL MANAGEMENT PLAN AND DEED RESTRICTION	7
	2.10	DISCOVERY OF PREVIOUSLY UNIDENTIFIED VAULTS	7
	2.10	2.10.1 Soil	7
		2.10.2 Ground Water	8
	2.11	GROUND WATER MONITORING	8
	2.12	SOIL GAS SURVEY	8
	2.12		Ü
3.0	OFF-	SITE IMPACTED PROPERTIES	10
	3.1	PILOT CHEMICAL	10
	3.2	PHIBRO-TECH, INC.	10
	3.3	REGIONAL IMPACT	11
4.0	HUM	IAN HEALTH SCREENING EVALUATION	12
	4.1	SOIL	12
		4.1.1 Hydrocarbons,	12
		4.1.2 Title 22 Metals	13
	4.2	SOIL GAS	14
		4.2.1 Chemicals of Concern	15
		4.2.2 Exposure Pathways	15
		4.2.3 Exposure Concentrations and Chemicals	16
		4.2.4 Toxicity Values	16
		4.2.4.1 Carcinogenic Health Effects	16
		4.2.4.2 Non-Carcinogenic Health Effects	17
		4.2.5 Risk Characterization Summary	17
		4.2.5.1 Carcinogenic Risk	17
		4.2.5.2 Non-Carcinogenic Health Hazards	18
		4.2.6 Uncertainty Analysis	18
		4.2.7 Conclusions	19

5.0	CURRENT GROUND WATER SAMPLING ACTIVITIES	21
	5.1 GROUND WATER SAMPLING	21
	5.2 SAMPLE IDENTIFICATION, DOCUMENTATION, PACKAGING	
	AND SHIPPING	21
	5.3 DECONTAMINATION PROCEDURES	22
	5.4 MANAGEMENT OF WASTES	22
	5.5 ANALYTICAL TESTING	22
	5.6 GROUND WATER ELEVATION MAP	22
6.0	DISCUSSION	23
7.0	REQUEST FOR CLOSURE	24
8.0	LIMITATION	25
9.0	REFERENCES	20
TAB	LES:	
1:	Historical (1994 - 2010) Soil Testing Results – Hydrocarbons	
2:	Historical (1994 - 2009) Soil Testing Results – Title 22 Metals	
3:	Summary of Ground Water Elevation and Testing Results – Hydrocarbons	
4:	Summary of Ground Water Testing Results Metals	
5:	Soil Testing Results – BEA Remediation August 2006	
6:	Soil Testing Results – EAI Subsurface Units Removal February 2009	
7:	Summary of Well Construction Data	
8:	Soil Gas Testing Results – VOCs EPA Method 8260B	
9:	Soil Gas Testing Results – VOCs EPA Method TO-15	
10:	Summary of VOCs in Ground Water beneath Pilot Chemical	
	and Phibro-Tech, Inc. Sites	
11:	Toxicity Criteria – Human Health Screening Evaluation	
12:	Vapor Intrusion Health Risk Evaluation Using Soil Gas Data	
	(Maximum Concentrations Detected) from 5 Feet	
13:	Vapor Intrusion Health Risk Evaluation Using Soil Gas Data	
	(Maximum Concentrations Detected) from 15 Feet	
14:	Vapor Intrusion Health Risk Evaluation Using Soil Gas Data	
	(95% LICE for PCF and Maximum Concentrations Detected) from 15 Feet	

REQUEST FOR CLOSURE AND SECOND QUARTER 2012 GROUND WATER MONITORING REPORT

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

FIGURES:

- 1: Site Location Map
- 2: Site Plan
- 3: Historical Media Sampling Locations
- 4: BEA Remedial Excavations August 2006
- 5: Subsurface Units Closed in February 2009
- 6: Cross-Section A-A'
- 7: Cross-Section Location Map
- 8: Sample Point Locations Map Concrete Vaults
- 9: Soil Gas Sampling Locations
- 10: Aerial Vicinity Map
- 11: Central Basin Ground Water PCE Plume
- 12: Site Conceptual Model
- 13: Ground Water Elevation Map, June 13, 2012
- 14: PCE in Ground Water (MW-1D & MW-4)
- 15: TCE in Ground Water (MW-1D & MW-4)
- 16: PCE and TCE in Ground Water (MW-3)

APPENDICES:

- A: Ground Water Sampling Logs
- B: Chain of Custody Record and Laboratory Reports

1.0 INTRODUCTION

This document constitutes a Request for Closure and a Ground Water Monitoring Report for the Second Quarter 2012 for the real property identified as 11630 - 11700 Burke Street, Santa Fe Springs, Los Angeles County, California 90670 (Site) (see Figure 1). EAI was retained by Mr. Larry Patsouras, the current property owner, to prepare this report.

Assessment efforts associated with the Site are currently being overseen by the California Regional Water Quality Control Board, Los Angeles Region (RWQCB). Mr. Henry Jones is the RWQCB Case Manager assigned to the Site and the Site Cleanup Program Case Number is 1238.

1.1 BACKGROUND INFORMATION

The Site, approximately 8.5 acres, is identified by the County of Los Angeles as Assessor's Parcel Number 8168-001-008. For reporting purposes the Site has been divided into the "East Parcel" where Mr. Patsouras operates El Greco, a wholesale grocery warehouse, and the "West Parcel" where Talco Plastics formerly operated until 1997 (see Figure 2). All of the former Talco Plastics facilities have been removed from the Site pursuant to permits issued by the City of Santa Fe Springs and a new 108,000 square foot warehouse has been constructed.

Historically, the Site Mitigation Unit (SMU), Health Hazardous Materials Division, County of Los Angeles Fire Department was initially working on environmental issues associated with the Site. On June 4, 1997, the SMU forwarded a letter to Mr. Jim Ross of the RWQCB transferring the case to the RWQCB due to the presence of chemicals, e.g., tetrachloroethene (PCE) and trichloroethene (TCE) detected in ground water beneath the Site.

On May 27, 2010 the property owner meet with the RWQCB. Pursuant to that meeting, the RWQCB confirmed in a letter dated July 13, 2010 that the Site would continue quarterly ground water monitoring for a period of two years. The two years of ground water monitoring were completed on June 13, 2012.

1.2 SCOPE OF WORK

The scope of work completed for this event included:

- Gauging and purging all wells associated with the Site (MW-1D, MW-2, MW-3, and MW-4).
- Analytical testing of ground water samples for total petroleum hydrocarbons as gasoline (TPH-G) and diesel (TPH-D) by modified EPA Method 8015, volatile organic compounds (VOCs) by EPA Method 8260B, total chromium by EPA Method 200.7, and hexavalent chromium by EPA Method 218.6.
- Preparation of this report summarizing prior Site investigations and remediation activities and requesting closure for ground water.

2.0 SUMMARY OF PRIOR INVESTIGATIONS

2.1 PHASE I SITE ASSESSMENT

In June 1994 AIG Consultants, Inc. (AIG) completed a Phase I Environmental Site Assessment of the Site (see AIG, 1994). The Site at that time was owned by Mr. William Palley and the West Parcel was occupied by Talco Plastics and the East Parcel contained a warehouse that was vacant (see Figure 2). The purpose of the assessment was to identify any known or potential environmental problems at the Site. Based upon their investigation, AIG concluded that there was evidence of past activity at the Site which may represent environmental risks and/or liabilities, and therefore, AIG recommended that a Phase II investigation be performed to determine the presence or absence of contamination.

2.2 PHASE II SITE ASSESSMENT

In August 1994, Professional Service Industries, Inc. (PSII) completed a Phase II investigation of the Site (see PSII, 1994). Based on review of the AIG Phase I report and a walk-through and inspection of the property, PSII drilled and sampled eight borings (B-1 through B-8) ranging in depth from 4.5 to 35 feet below ground surface (bgs), and four hand auger borings (HA-1 through HA-4) on the Site. These soil sampling locations targeted the following areas of the Site (see Table 1 and Figure 3):

LOCATION	BORING
East Parcel	
- Storage Shed	HA-1
- Abandoned Clarifiers	B-6, B-7
- Historical Stained Areas	B-1, B-2, B-3, B-4, B-8
West Parcel	
- Clarifiers (Historical Paint/Steam Cleaning Area)	HA-2, HA-3
- Maintenance Shop (Clarifier)	B-5
- Equipment Storage (Stained Area)	HA-4

Soil samples were selectively analyzed for total petroleum hydrocarbons (TPH) by modified EPA Method 8015, volatile organic compounds (VOCs) by EPA Method 8260, and Title 22 metals by EPA Methods 6010/7471. The results of the hydrocarbon testing are summarized on Table 1 and metal testing on Table 2.

For comparison purposes, Table 1 and Table 2 include Soil Screening Levels (SSLs) based on use of RWQCB attenuation factor guidance (see RWQCB, 1996A and 1996B), California Human Health Screening Levels (CHHSLs) for residential land use and commercial/industrial land use (see Cal-EPA, 2005), and EPA Region 9 Screening Levels for Chemical Contaminants (SLCCs) at Superfund Sites for residential land use and commercial/industrial land use (see EPA, 2008).

2.3 SUPPLEMENTAL SITE ASSESSMENTS

Supplemental assessments of the Site were completed by EAI in 1994 (see EAI, 1995), 1996 (see EAI, 1997) and 1999 (see EAI, 1999). These investigations included:

- 1994: Drilling and sampling of borings E-1 through E-17, and installation of ground water monitoring well MW-1. Borings E-1 through E-17 ranged in depth from 10 to 45 feet bgs. Note four attempts were made to advance boring E-13; however, auger refusal was encountered at each location. Ground water was encountered beneath the Site at a depth of about 36 feet bgs, and therefore, well MW-1 was terminated at a depth of 53 feet bgs and slotted between 33 and 53 feet bgs.
- 1996: Near surface soil sampling locations SS-1, SS-2, SS-3, SS-4 and SS-5, and installation of ground water monitoring well MW-2.
- 1999: Drilling and sampling of borings S-1 through S-10 (each 10 foot deep) and sample location Pit.

These media sampling locations targeted the following areas of the Site (see Figure 3):

LOCATION	BORING
East Parcel	
- Storage Shed	E-8, E-9, E-11
- Abandoned Clarifiers	E-7, E-14, E-15
- Historical Stained Areas	E-10, E-12, SS-1, SS-2,
	SS-3, SS-4
West Parcel	
- Underground Storage Tanks	E-1, E-2, E-3, E-4
- Clarifiers (Historical Paint/Steam Cleaning Area)	E-5, E-6, S-3, S-4, S-5,
	S-6, S-7, S-8, Pit
- Mechanical Pit	E-16
- Maintenance Shop (Clarifier)	E-17, S-1, S-2
- Removed Storm Water Clarifier	S-9, S-10

(TPH-O) by modified EPA Method 8015M, total recoverable petroleum hydrocarbons (TRPH) by EPA Method 418.1, VOCs by EPA Methods 8020, 8240 and 8260, Title 22 metals, semi-volatile organic compounds (SVOCs) by EPA Method 8270C, and polychlorinated biphenyls (PCBs) by EPA Method 8082. See Table 1 and Table 2 for soil testing results.

Ground water well MW-1 was located in the central area of the Site near the former storage shed and clarifiers, and MW-2 in the northeastern area of the Site (see Figure 3). Based on ground water elevation data for two adjacent properties with known soil and ground water contamination (see Section 4.0) the ground water flow for the area is westerly to southwesterly.

Ground water samples were collected and analyzed for hydrocarbons and Title 22 Metals. Table 3 summarizes the ground water quality data for hydrocarbons and Table 4 for metals.

2.4 REMOVAL OF UNDERGROUND STORAGE TANKS

In April 1998, two USTs (one diesel and one gasoline) were removed from the Site by Advanced GeoEnvironmental, Inc. (AGI) pursuant to a permit issued by the SFSFD. The dispenser (fuel) island and product piping were located directly over the two USTs. Five soil samples were collected from beneath the USTs following removal, i.e., two (B1A and B1B) from beneath the gasoline UST and three (B2A, B2B and B2C) from beneath the diesel UST (see Figure 3). Two samples (SP1 and SP2) of the soil excavated during USTs removal activities were also collected for analysis.

The soil samples collected from beneath the gasoline UST were analyzed for TPH-G, BTEX and MTBE, the samples beneath the diesel UST for TPH-G, TPH-D, BTEX and MTBE, and the stockpiled soil for TPH-G, TPH-D, TRPH, BTEX and MTBE (see AGI, 1998). No chemicals were detected in five soil samples collected from beneath the USTs (see Table 1). TRPH at a maximum concentration of 20 mg/kg was the only chemical detected in the stockpiled soil.

Based on review of AGI, 1998 the SFSFD issued a no further action (NFA) letter for the USTs dated May 1, 1998.

It should be noted that Amnat Environmental & Geotechnical (AEG) completed a Leak Detection Investigation of the USTs in 1995 for the Los Angeles County Department of Public Works. The investigation included the drilling and sampling of six borings, i.e., boring B-1 and B-3 to 40 feet bgs, B-5 and B-6 to 20 feet bgs, and B-2 and B-4 to 5 feet bgs (see AEG, 1995). Fourteen soil samples were analyzed for TPH-G, TPH-D and BTEX. No chemicals were detected in the soil samples analyzed. Note these data are not included on Figure 3 or Table 1.

2.5 REMOVAL OF STORM WATER CLARIFIER

Pursuant to closure authorization issued by the SFSFD on January 7, 1999, the storm water clarifier located west of the office building situated on the West Parcel of the Sitc was removed. On August 25, 1999, the SFSFD issued a closure certification for the storm water clarifier.

It should be noted that EAI borings S-9 and S-10 were drilled and sampled in February 1999 to assess potential impacts associated with the storm water clarifier (see Figure 3). Soil samples collected from each boring at 10 feet bgs were analyzed for TRPH and VOCs, and no chemicals were detected (see Table 1).

2.6 SOIL REMEDIATION – 2006

In 2006, Biophysics Environmental Assessment, Inc. (BEA) was retained by Mr. Patsouras to excavated impacted soil for two areas on the East Parcel of the Site, i.e., storage shed (EAI Borings E-9 and HA-1) and abandoned clarifier area (EAI Boring B-7). These two areas of the

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

East Parcel were targeted for excavation since prior investigations indicated the presence of hydrocarbons in soil above SSLs (see Table 1).

BEA submitted to the SFSFD a Soil Remediation Work Plan (see BEA, 2006A) and Addendum to Soil Remediation Work Plan (see BEA, 2006B) outlining the soil excavation efforts proposed for the Site. On August 9, 2006 the SFSFD issued a letter approving the Soil Remediation Work Plan as amended.

Between August 16 and 18, 2006, BEA excavated two trenches to approximately 20 feet bgs in areas of the storage shed and abandoned clarifier (see Figure 4). A total of 25 soil samples were collected as part of the excavation efforts, i.e., 12 from the storage shed trench and 13 from the abandoned clarifier area trench. Each soil sample was analyzed for TPH-G, TPH-D, TPH-O and VOCs, including fuel oxygenates, and six soil samples were also analyzed for Title 22 metals (see Table 5).

TPH-G was not detected in any of the 25 soil samples analyzed. TPH-D was detected in four of the 25 soil samples at concentrations ranging between 5.2 mg/kg and 146 mg/kg, and TPH-O in two samples at concentrations of 30J mg/kg (this is an estimated concentration above the method detection limit, but below the laboratory reporting limit) and 180 mg/kg. All of the TPH-D and TPH-O concentrations detected are below their respective SSLs.

Toluene and xylenes were the only VOCs detected in the 25 soil samples analyzed, and both chemicals were detected in only one soil sample, i.e., E9Center@10'. The toluene and xylenes concentrations detected are below their respective SSLs.

Several Title 22 metals were detected in the six soil samples analyzed, i.e., arsenic, barium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium, and zinc. No metals were detected above environmental screening levels established for residential and commercial/industrial land use, except arsenic. Arsenic was detected in all six samples at concentrations ranging between 3.6 mg/kg and 5.8 mg/kg.

On October 6, 2006 the SFSFD issued a letter providing comments on the BEA Soil Remediation Report of Findings (see BEA, 2006C). This letter indicates that no further action will be required by the SFSFD for the two areas excavated by BEA in August 2006. However, the letter identified other non-UST regulated subsurface units that require closure by the SFSFD, before redevelopment can be considered. The closure of these subsurface units is addressed in Section 2.7.

It should be noted that the BEA Soil Remediation Report of Findings does not include any figures depicting the locations of the various soil samples collected by BEA as part of their investigation. Only one figure depicting the excavation areas is included in the BEA report.

2.7 CLOSURE OF SUBSURFACE UNITS – 2009

In February 2009, the five non-UST regulated subsurface units associated with the SFSFD letter dated October 6, 2006 (see Section 2.6) were addressed by EAI pursuant to permits issued by the City of Santa Fe Springs (see EAI, 2009B). The units were identified as (see Figure 5):

Subsurface								
Unit No.	Identification							
1	Abandoned water line							
2	Concrete electrical utility							
	box							
3	Clarifier							
4	Clarifier							
5	Clarifier							

Media samples were analyzed for TPH-G, TPH-D, VOCs, SVOCs, Title 22 metals, and PCBs. Table 6 summarizes the results of the analytical testing and media sampling locations are depicted on Figure 5. On April 16, 2009 the SFSFD issued a closure letter for the subsurface units (see SFSFD, 2009).

2.8 REMOVAL OF HYDROCARBON IMPACTED SOIL TO A MINIMUM DEPTH OF 13 FEET BGS AND REMOVAL OF SUBSURFACE UNIT 6 - 2010

Soil and soil gas surveys have identified three small areas on the eastern side of the West Parcel with residual hydrocarbon impacted soil (see Figures 6 and 7). At the direction of the RWQCB, shallower impacted soil at the Site was removed in February 2010 down to a minimum depth of 13 feet bgs. Currently residual hydrocarbons extend to a maximum depth of approximately 31 feet (boring E-9@30-31'). This sample was obtained in 1994 and was at a concentration of 10,900 mg/kg TRPH. A soil sample obtained from this same boring was collected at a depth of 15-16 feet bgs and analyzed for carbon chain breakdown. The carbon chain breakdown data indicate that the release at this Site is heavy oil with some heavy end diesel range hydrocarbons.

There are only three residual TPH-D sample point locations remaining at the Site that are above SSLs, i.e., Sample 4 at 15' at 4,940 mg/kg, B-7Ad20 at 3,400 mg/kg, and B-7B@13' at 3,040 mg/kg. Furthermore there are only three residual TPH-O sample point locations remaining at the Site above SSLs, i.e., B-7@25' at 12,300 mg/kg, B-7A@20' at 12,300 mg/kg, and B-7B@13' at 12,600 mg/kg. Concentrations at these three sample points are barley above the SSLs for TPH-O of 10,000 mg/kg. Two residual samples, E-9@20-21' and E-9@30-31', analyzed as TRPH contained concentrations of 15,600 and 10,900 mg/kg, respectively.

Gasoline range hydrocarbons have been detected only three times at the Site. The two highest TPH-G concentrations (SS-4@2', 743 mg/kg and Stockpile D, 427 mg/kg) have been removed, leaving only Sample 4@15' at 12.4 mg/kg.

Residual hydrocarbons have been identified at the Site at a maximum depth of 31 feet bgs. Ground water at the Site was last measured at a depth of approximately 52 feet bgs making a

total of 21 feet of clean material between the residual hydrocarbons and the water table. In EAI's opinion these residual hydrocarbons in soil do not represent a risk to human health or the environment.

2.9 SOIL MANAGEMENT PLAN AND DEED RESTRICTION

Prior to commencement of grading activities a "Soil Management Plan" (SMP) dated July 22, 2010 was prepared for the Site and approved by the RWQCB (see EAI, 2010B). The SMP was designed to be protective of construction personnel from hydrocarbons, VOCs, and metals during grading activities.

Additionally, a deed restriction was prepared and approved by the LARWQCB and placed on the property restricting the future use and development of the Site to commercial, industrial or office space.

2.10 DISCOVERY OF PREVIOUSLY UNIDENTIFIED VAULTS

During grading activities three previously unidentified vaults were discovered. The RWQCB was notified, a work plan was generated, and the three vaults were removed (see EAI, 2010B).

2.10.1 Soil

No TPH, VOCs, SVOCs or PCBs were detected in the soil samples collected from beneath Concrete Vault 1, Concrete Vault 2 or Concrete Vault 3 (see Figure 8). Arsenic was the only metal detected above its CHHSL-I. However, all of the arsenic concentrations detected are below the 12 mg/kg action level established by DTSC for school sites, and therefore, not considered problematic.

At the base of Vault 3 was a 12-inch pipe that extended to a depth of approximately 75 feet bgs. This pipe was filled with concrete and capped with a mushroom cap. Boring V-3 was drilled beside this vault to a total depth of 75 feet bgs. Soil samples were obtained at 15 feet bgs and at 5-foot intervals thereafter until termination in the top of the water table.

The soil samples and grab ground water sample were analyzed for TPH, VOCs, SVOCs, PCBs, and Title 22 Metals.

No TPH, VOCs, SVOCs or PCBs were detected in the soil samples. Arsenic was detected in all soil samples above its CHHSL-I of 0.24 mg/kg. However, the maximum arsenic concentration detected (10.9 mg/kg at 60 feet bgs) is below the 12 mg/kg action level established by DTSC for school sites, and therefore, not considered problematic

Based on the lead concentration associated with debris removed from inside Concrete Vault 3, (see Table 1), this material was disposed of off-site as a hazardous waste. Material removed from Vaults 1 and 2 was not impacted.

2.10.2 Ground Water

The VOCs detected in the ground water sample collected from boring V3 are consistent with the regional contamination for the area and on-site wells, and therefore, no further action is required for ground water other than the ground water monitoring currently being completed for the Site.

2.11 GROUND WATER MONITORING

Ground water has been sampled several times at the Site since 1995. The constituents of concern in soil at the Site, TPH-G, TPH-D, TPH-O, have never been detected in any ground water sample at the Site (see Table 3). Table 7 contains well construction details.

During the April 2010 ground water sampling event, PCE was detected in monitoring well MW-3 at a concentration of 130 μ g/L. In EAI's opinion this concentration is not representative of ground water at this location because:

- 1: There was only about one foot of water in this well when it was gauged.
- 2: This well could not be purged prior to sampling.
- 3: The water obtained from this well represents water obtained from the well end cap and in EAI's opinion is not representative of water table conditions.

PCE concentrations in wells MW-1D and MW-4 were 16.7 and 11.3 μ g/L, respectively. These concentrations are in line with regional ground water concentrations of PCE.

2.12 SOIL GAS SURVEY

On February 23 and 24, 2009, a soil gas survey was conducted to address the presence or absence of VOCs beneath the West Parcel of the Site at depths of 5 and 15 feet bgs. The West Parcel of the Site was divided into 100' by 100' grid segments and soil gas samples collected and analyzed from the approximate center of each grid segment (see Figure 9) (see EAI, 2009C).

Soil gas samples were collected from soil gas probe locations identified as A4 through E5 (see Figure 9). Soil gas samples were analyzed on-site by a mobile laboratory operated by H&P Mobile GeoChemistry (H&P).

The following chemicals were detected in soil gas beneath the Site:

- Propene
- Trichlorofluoromethane (TCFM)
- Acetone
- 1,1-Dichloroethene (1,1-DCE)
- Carbon Disulfide
- 1,1-Dichloroethane (1,1-DCA)
- 2-Butanone (MEK)
- Chloroform
- Benzene

- Carbon Tetrachloride
- Trichloroethene (TCE)
- Toluene
- Tetrachloroethene (PCE)
- Chlorobenzenc
- Ethylbenzene
- Xylenes
- 1,2,4-Trimethylbenzene (1,2,4-TMB)
- 1,3,5-Trimethylbenzene (1,3,5-TMB)

Listed below are the frequency of detection and the maximum concentration of each chemical detected at 5 and 15 feet bgs (see Table 8 and Table 9).

	Maximum			Maximum				
	Concentration	Detection	n	Concentration	Detection			
	5 feet bgs	Frequenc	у	15 feet bgs	Frequency			
	(ug/L)	5 feet bg	S	(ug/L)	15 feet b	gs		
Propene _	0.23	1/1*	10 <u>0</u> %	0.021	1/1*	100%		
Trichlorofluoromethane	<0.005	0/29	0%	0.011	1/28	3.5%		
Acetone	0.32	1/1*	100%	0.55	1/1*	100%		
1,1-DCE	<0.005	0/29	(0%	0.0059	1/28	_3.5%		
Carbon Disulfide	0.036	1/1*	100%	0.001	1/1*	100%		
1,1-DCA	<0.005	0/29	0%	0.0058	1/28	3.5%		
MEK	0.23	1/1*	100%	0.0091	1/1*	100%		
Chloroform	< 0.005	0/29	0%	0.15	3/28	11%		
Benzene	0.26	9/29	31%	0.16	10/28	36%		
Carbon Tetrachloride	< 0.005	0/29	0%	0.17	4/28	_14%		
TCE	0.016	1/29	3%	3.7	21/28	75%		
Toluene	0.057	1/29	3%	1.0	2/28	7%		
PCE	0.47	16/29	55%	17	28/28	100%		
Chlorobenzene	0.009	1/1*	100%	< 0.005	0/1*	0%		
Ethylbenzene	0.015	1/29	3%	0.65	2/28	7%		
Xylenes	0.077	1/29	3%	3.22	2/28	7%		
1,2,4-TMB	0.017	1/1*	100%	0.0094	1/1*	100%		
1,3,5-TMB	0.0058	1/1*	100%	<0.005	0/1*	0%		

^{* =} Chemical included only for samples analyzed by EPA Method TO-15.

Propene, acetone, carbon disulfide, MEK, chlorobenzene, 1,2,4-TMB and 1,3,5-TMB are not included in the list of target chemicals associated with EPA Method 8260B and are only associated with the two confirmation soil gas samples collected in Summa Canisters and analyzed by EPA Method TO-15, i.e., samples E3@5' and D6@15' (see Table 9).

3.0 OFF-SITE IMPACTED PROPERTIES

There are two properties adjacent to the Site that are known to be impacted, i.c., Pilot Chemical Company located at 11756 Burke Street and Phibro-Tcch, Inc. located at 8851 Dice Road, as well as regional contamination identified for the area by the Water Replenishment District of Southern California (WRD) (see WRD, 2007).

3.1 PILOT CHEMICAL

This property is about 4.3 acres in size, located immediately east of the Site across the railroad tracks, and was used to manufacture detergent for industrial purposes. Pilot Chemical is an active case being overseen by the RWQCB, Mr. Henry Jones is the Case Manager, and the matter is identified as Case No. 0383, Site ID No. 2041500. Chemicals of concern include both petroleum and chlorinated hydrocarbons.

Ground water monitoring for the Pilot Chemical site is completed on a semi-annual basis. Figure 10 depicts the approximate location of the 11 ground water wells associated with the Pilot Chemical site and Table 10 summarizes the most recent VOC ground water quality data available to EAI, i.e., April 2008 (see PEE, 2008). The ground water flow direction is reported as westerly-southwesterly.

3.2 PHIBRO-TECH, INC.

This property is about 4.8 acres in size, located immediately east-southeast of the Site across the railroad tracks, and receives various hazardous aqueous wastes and recyclable materials primarily from the electronic and aerospace industries and treats these substances to create usable new products. Phibro-Tech, Inc. is an active case being overseen by DTSC and Ms. Kathy San Miguel of the DTSC Cypress Office is the Case Manager.

Ground water monitoring was initiated at the Phibro-Tech, Inc. site over 20 years ago and continues as part of ongoing cleanup efforts. Three types of contaminants have generally been detected in ground water beneath the Phibro-Tech, Inc. site: (a) dissolved metals; (b) non-chlorinated VOCs; and (c) chlorinated VOCs (see IRIS, 2008). Elevated concentrations of dissolved metals such as hexavalent chromium have consistently been detected in the vicinity of Pond 1, a Resource Conservation & Recovery Act (RCRA) regulated former surface impoundment area located in the center of the facility.

There are over 20 ground water monitoring wells associated with the Phibro-Tech, Inc. site. Figure 10 depicts the approximate location of these wells and Table 10 summarizes the most recent VOC ground water quality data available to EAI, i.e., July 2008 (see IRIS, 2008). The ground water flow direction for the upper zone wells, i.e., 45 feet bgs, is reported as southwest. Although not reported on Table 10, hexavalent chromium concentrations for the July 2008 sampling event ranged from 0.0012 mg/L to 11 mg/L. Hexavalent chromium concentrations were as high as 120 mg/L in 1989 and have fluctuated between non-detect and 33 mg/L since October 2001.

3.3 REGIONAL IMPACT

The WRD, in cooperation with the United States Geological Service (USGS), has completed a ground water contamination study to assess the Central Basin threat of multiple contamination plumes in the area (see WRD, 2007). The Central Basin includes the cities of Whittier and Santa Fe Springs.

Several large scale releases such as the Omega Chemical Corporation facility in Whittier, a federal Superfund Site being overseen by EPA with a ground water plume known to extend over three miles, McKesson Chemical Corporation facility in Santa Fe Springs being overseen by DTSC, and Angeles Chemical Company, Inc. in Santa Fe Springs being overseen by DTSC, have resulted in regional ground water impacts to the area, which includes the Site. The chemicals of concern are PCE (primary chemical of concern), TCE and their breakdown products. TCE is a known breakdown product of PCE. Figure 10 presents the regional ground water flow direction and Figure 11 depicts the regional PCE plume for the WRD Central Basin.

4.0 HUMAN HEALTH SCREENING EVALUATION

Figure 12 presents a Site Conceptual Model.

4.1 SOIL

Table 1, Table 2, Table 5 and Table 6 summarize the results of testing soil samples collected from the Site to date and include SSLs, SLCCs and CHHSLs for screening purposes. SSLs have been developed by the RWQCB for the protection of ground water, and SLCCs by EPA and CHHSLs by Cal-EPA for the protection of human health.

Residential and commercial CHHSLs are applicable to soils that are at the ground surface or could be brought to the ground surface at some time in the future, with subsequent potential exposure by human receptors. A depth of more than three meters (approximately 10 fect) is generally used to delineate "deep" soils that are likely to remain isolated in the subsurface versus "shallow" soils that may be exposed during future redevelopment activities (see Cal-EPA, 1996).

4.1.1 Hydrocarbons

Historical soil sampling at the Site for hydrocarbons (see Table 1) did not identify any locations where chemicals were detected above SLCCs or CHHSLs established for residential or commercial land use. Hydrocarbons above SSLs were identified only for sample locations HA-1@2', boring E-9 between 10 feet and 31 feet, boring B-7 between 10 feet and 25 feet, and sample location SS-4@2'.

BEA completed excavation efforts in 2006 covering boring locations E-9 and B-7 (see Figure 4). These efforts removed impacted soil down to about 20 feet at these two locations and confirmation soil samples did not contain any hydrocarbons above SSLs, SLCCs or CHHSLs (see Table 5).

EAI addressed Subsurface Unit No. 1 through Subsurface Unit No. 5 in February 2009 (see Figure 5). Only the soil sample collected from 15 feet bgs associated with Subsurface Unit No. 3 contained a TPH-D concentration which exceeds the SSL standard of 1,000 mg/kg, i.e., TPH-D at 4,940 mg/kg for Sample 4@15'. However, Sample 4@15' did not contain any detectable concentrations of SVOCs or any VOCs above SSLs standards (see Table 6). Elevated concentrations of hydrocarbons were detected in soil Stockpile D, and therefore, this soil was shipped off-site for processing.

The following lists areas of the Site where hydrocarbons are present in soil above SSLs, but below SLCCs and CHHSLs established for commercial land use:

Year/Sample Location and	Chemicals of Concern
Depth	(mg/kg)
1994: HA-1@2'	TPH-O@30,000
1994: E-9@25'	TRPH@15,600
1994; E-9@31'	TRPH@10,900
1994: B-7@25'	TPH-O@12,330
	and PCE@0.51
1996: SS-4@2'	TPH-G@743 and
	TPH-D@3,590
2009: Sample 4@15'	TPH-D@4,940

With the exception of locations HA-1 and SS-4, the other three locations (E-9, B-7 and Sample 4) have impacted soils at depths equal to or greater than 15 feet bgs, and therefore, were not disturbed as part of the redevelopment (warehouse) for the Site. Further, these three areas are all outside the footprint of the new warehouse building (see Figure 12) and could be addressed at a later date, if necessary. Heavy end petroleum hydrocarbons are the chemical of concern for these three areas. In 1994, over 18 years ago PCE was detected at 0.51 mg/kg at sample location B-7@25' and this PCE concentration has since likely been degraded. Therefore, pursuant to approval of the RWQCB the deep soils for locations E-9, B-7 and Sample 4 were left in-place.

With respect to the shallow impacted soils associated with locations HA-1 and SS-4, this soil was excavated and shipped off-site for processing.

4.1.2 Title 22 Metals

No Title 22 metals, except arsenic, were detected in soil samples above SLCCs or CHHSLs established for commercial land use. Arsenic was detected at concentrations ranging from 0.870 mg/kg to 55 mg/kg. However, metals (including arsenic) are naturally occurring elements typically found in native California soils. Per Department of Toxic Substances Control (DTSC) guidelines (see DTSC, 1999) metals detected at background concentrations or levels determined by DTSC to be safe maybe eliminated as chemicals of concern. DTSC has established 12 mg/kg as a background arsenic concentration for Los Angeles Unified School District (LAUSD) school sites (see DTSC, 2009).

In order to determine the upper 95 percent confidence level (95% UCL) for arsenic detected in soil at the Site, EAI used ProUCL 4.0, a computer program developed by the EPA (see EPA, 2007). See EAI, 2009C for the results of the evaluation which are also summarized below:

Descriptive Statistics	Value
Total Number of Samples	39
Number of Samples below Detection Limit	20 (or 51.28%)
Maximum Detected Concentration of Arsenic	55 mg/kg
Maximum Detection Limit	5.0 mg/kg
Minimum Detection Limit	0.3 mg/kg
95% UCL by EPA Recommended Kaplan-Meier	12.99 mg/kg
Method	

The 95% UCL arsenic concentration in soil for the Site of 12.99 mg/kg is very close to (within the range of) the 12 mg/kg background concentration determined acceptable by DTSC for LAUSD school sites, i.e., one of DTSC's most sensitive (restrictive) land uses.

The Site is zoned for heavy industrial/manufacturing land use (M-2) and currently is almost completely paved with asphalt and/or concrete or covered by buildings, i.e., only minimal landscaping. An approximately 108,000 square foot warehouse was constructed on the West Parcel of the Site (see Figure 3) and the remaining area has been paved with concrete for parking with minimal landscaping. Therefore, there is no exposure pathway for contact with Site soils. This coupled with the deed restriction that was required by the RWQCB for the Site (see Section 2.9) along with proper contractor notification and monitoring during Site redevelopment resulted in the Site being given a permit to construct.

4.2 SOIL GAS

A human health screening evaluation was completed to determine if the VOCs detected in soil gas beneath the Site at 5 feet bgs and 15 feet bgs are problematic. This screening evaluation for human health effects involves identifying chemicals of concern, evaluating exposure pathways and media of concern, assessing chemical toxicity, and subsequently, characterizing risks. Estimated health risks are based on a calculated dose (i.e., the amount of chemical intake), which integrates exposure parameters for the receptors of concern (e.g., contact rates, exposure frequency and duration), with chemical-specific toxicity criteria (e.g., reference doses and slope factors) and exposure concentrations for the media of concern. The calculated risks are then compared to health-based guidelines developed by the DTSC. For the purpose of this screening evaluation, the potential risks are calculated based on both a hypothetical residential exposure and commercial land-use scenario. The Site is currently zoned for manufacturing/industrial land use.

Exposure to chemicals can only occur if there is a complete pathway by which chemicals in Site soil, water, or air can be contacted by humans. Therefore, the evaluation of exposure pathways and media of concern is the first step in the human health screening evaluation. The results of the human health screening evaluation for indoor air soil gas intrusion are summarized in the risk characterization section.

4.2.1 Chemicals of Concern

The chemicals detected in soil gas beneath the Site at 5 feet bgs, 15 feet bgs, and their maximum concentrations are listed below:

	Maximum Concentration 5 feet bgs	Maximum Concentration 15 feet bgs
	(ug/L)	(ug/L)
Propene	0.23	0.021
Trichlorofluoromethane	<0.005	0.011
Acetone	0.32	0.55
1,1-DCE_	_<0.005	0.0059
Carbon Disulfide	0.036	0.001
1,1-DCA	< 0.005	0.0058
MEK	0.23	0.0091
Chloroform	< 0.005	0.15
Benzene	0.26	0.16
Carbon Tetrachloride	< 0.005	0.17
TCE	0.016	3.7
Toluene	0.057	1.0
PCE	0.47	_17
Chlorobenzene	0.009	< 0.005
Ethylbenzene	0.015	0.65
Xylenes	0.077	3.22
1,2,4-TMB	0.017	0.0094
1,3,5-TMB	0.0058	< 0.005

4.2.2 Exposure Pathways

Exposure to vapors which may intrude into indoor air was evaluated for the VOCs detected in soil vapor. The Site is now developed and is covered almost entirely by a building and concrete for parking which precludes the potential for direct contact with soil by future building occupants or visitors. Figure 12 is a Site Conceptual Model of the pathway evaluated by this human health screening evaluation, i.e., exposure to vapors intruded into indoor air. No other exposure pathways were considered.

Exposure to human receptors may occur through infiltration of soil gas into the indoor space. The highest concentrations of individual chemicals detected in soil gas beneath the Site were used for evaluating subsurface gas intrusion into the proposed Site building. To evaluate the health risk, the highest detected concentrations for all of the VOCs detected were input in the DTSC version of SG-Screen Model (see DTSC, 2005).

4.2.3 Exposure Concentrations and Chemicals

Section 4.2.1 summarizes the chemicals detected in soil gas beneath the Site at 5 feet bgs and 15 feet bgs. The health risk calculations were based on using:

- Residential land use scenario and commercial land use scenario.
- Maximum chemical concentrations detected in soil gas as exposure point concentrations.
- Average vapor flow rate into the new building proposed for the Site of 5 liters per minute.
- DTSC model default values for soil physical parameters, e.g., percent moisture content and dry density.

4.2.4 Toxicity Values

The toxicity assessment characterizes the relationship between the magnitude of exposure to chemicals of concern, and the nature and magnitude of adverse health effects that may result from such exposure. For purposes of calculating exposure criteria to be used in risk assessments, adverse health effects are classified into two broad categories, non-carcinogens and carcinogens. Toxicity values/exposure criteria are generally developed based on the threshold approach for non-carcinogenic effects and the non-threshold approach for carcinogenic effects. Toxicity values may be based on epidemiological studies, short-term human studies, and subchronic or chronic animal data.

Toxicity values used in this screening evaluation are from DTSC's Screening Model Lookup tables, except for propene and the inhalation slope factor for ethylbenzene, which are from the Office of Environmental Health Hazard Assessment (OEHHA) toxicity database.

4.2.4.1 Carcinogenic Health Effects

Certain chemicals are regulated as carcinogens based on the likelihood that exposure could cause cancer in humans. Numerical estimates of cancer potency for these chemicals are presented as cancer slope or potency factors. The cancer potency factor defines the cancer risk due to constant lifetime exposure to one unit of a carcinogen (units of risk per [ug/m³]-¹). Cancer potency factors are derived by calculating the 95% UCL on the slope of the linearized portion of the dose-response curve using the multistage cancer model on study data. Use of the 95% UCL of the slope means that there is only a 5 percent chance that the probability of a response could be greater than the estimated value for the experimental data used. This is a conservative approach and may overestimate the actual risk given that the actual risk is expected to be between zero and the calculated value. Carcinogenicity potency factors assume no threshold for effect, i.e., all exposures to a chemical are assumed to be associated with some risk, i.e., there is no threshold below which the risk is negligible or unlikely. If there are thresholds for carcinogenicity, the true risks could be zero at sufficiently low doses. Table 11 presents the cancer potency factors used in this health risk assessment.

4.2.4.2 Non-Carcinogenic Health Effects

A range of exposures is assumed to exist from zero to some finite value (a threshold) that can be tolerated by the organism without appreciable risk of an adverse health effect occurring for the purposes of assessing risks associated with non-carcinogenic effects.

Non-carcinogenic health effects were evaluated using reference concentrations (RfCs) developed by the EPA. The RfC is a health-based criterion based on the assumption that thresholds exist for non-carcinogenic toxic effects (e.g., lung or liver damage). In general, the RfC is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious health effects during a lifetime of exposure. RfCs are expressed as acceptable daily doses in mg/m³. Table 11 presents the RfCs used in this health risk assessment.

4.2.5 Risk Characterization Summary

Risk characterization integrates the quantitative and qualitative results of data evaluation, exposure, and toxicity assessments. The purpose is to estimate the likelihood, incidence, and nature of potential human health effects to defined receptor populations that may occur as a result of exposure to the chemicals of concern at the Site.

A total of 18 VOCs were identified in soil gas samples collected from the Site (see Section 4.2.1). Table 12 summarizes the chemical specific cancer and non-cancer risks for the Site based on soil gas data from 5 feet bgs, and Table 13 for soil gas data from 15 feet bgs.

4.2.5.1 Carcinogenie Risks

Carcinogenic risks are expressed as the upper-bound, increased likelihood of an individual developing cancer as a result of exposure to a particular chemical. For example, a cancer risk of 1×10^{-6} (one per million) refers to an upper-bound increased chance of one person developing cancer assuming one million people are exposed. The potential increase in cancer risk from exposure to chemicals detected in soil gas is in addition to a background risk of developing cancer. The background cancer risk is about one in three (0.33) for every American female, and one in two (0.5) for every American male of eventually developing cancer (see ACS, 1997). A cancer risk of one per million or less is typically considered acceptable for a residential land use scenario and 10 per million or less acceptable for a commercial land use scenario.

The results of the cancer risk calculations for the air exposure pathway, using the air concentrations derived from the DTSC SG-Screen Model (see EAI, 2009C), are provided in Table 12 and Table 13. The cancer risks associated with hypothetical residential exposures and commercial exposures are:

Soil Gas Depth	Residential	Commercial
5 feet bgs	3.8E-06 or 3.8 per million	2.3E-06 or 2.3 per million
15 feet bgs	1.6E-05 or 16 per million	9.8E-06 or 9.8 per million

It should be noted that PCE accounts for approximately 81% of the risk associated with soil gas data from 15 feet bgs (see Table 13), and PCE is the only chemical detected in all 28 soil gas samples collected from 15 feet bgs and was detected only in 16 of the 29 soil gas samples collected (55%) from 5 feet bgs (see Section 3.3). The presence of PCE in soil gas appears to be primarily the result of volatilization from the regionally contaminated ground water which is evidenced by higher concentration and frequency of detection at 15 feet bgs versus lower concentration and frequency of detection at 5 feet bgs, due to an upward diffusion process governed by Fick's law.

Another methodology that can be utilized to calculate risks is use of the 95% UCL for all chemicals detected as exposure point concentrations. However, with the exception of PCE in soil gas at 15 feet bgs, the frequency of detection for all other chemicals detected at 5 feet bgs and 15 feet bgs is insufficient to calculate the 95% UCL (see Section 3.3). However, if you use the upper 95% UCL for PCE detected in soil gas at 15 feet bgs, i.e., 8.123 ug/L (see EAI, 2009C), instead of the maximum concentration of 17 ug/L, along with the maximum concentrations for all other chemicals detected at 15 feet bgs, reduces the residential risk from 16 per million to 9.5 per million and the commercial risk from 9.8 per million to 5.6 per million (see Table 14).

4.2.5.2 Non-Carcinogenic Health Hazards

The potential for noncarcinogenic effects due to exposure to a particular chemical is expressed as the hazard quotient. A hazard quotient is the ratio of the estimated intake or average daily dose of a chemical to the corresponding chemical-specific toxicity value or RfC. The hazard quotients are then compared to an acceptable hazard level. Implicit in the hazard quotient is the assumption of a threshold level of exposure below which no adverse effects are expected to occur. If the hazard quotient exceeds 1.0 (i.e., site specific exposures would exceed the RfC), then the potential for non-carcinogenic adverse effects may exist. Hazard quotients less than 1.0 indicate that no adverse health effects are expected to occur from exposure to chemicals of concern at the Site.

The hazard index associated with hypothetical residential exposures and commercial exposures are (see Table 12, Table 13 and EAI, 2009C):

Soil Gas Depth	Residential	Commercial
5 feet bgs	1.5E-02 or 0.015	1.4E-02 or 0.014
15 feet bgs	1.7E-01 or 0.17	1.0E-01 or 0.1

4.2.6 Uncertainty Analysis

The purpose of a risk assessment is not to predict the actual risk of exposure to an individual. Risk assessments are a management tool for developing conservative estimates of health hazards that are unlikely to underestimate the true risk for potentially exposed populations. The numerical estimates in a risk assessment have associated uncertainties reflecting the limitations in available knowledge about site concentrations, exposure assumptions (e.g., exposure concentrations, intake rates) and chemical toxicity. Where information is incomplete,

conservative assumptions (assumptions that err on being overprotective) are made. The greater the uncertainty, the more conservative are the assumptions, in an attempt to be protective of public health. In other words, although calculations of exposure often must be simplified to a few pathways or subgroups within a population, the simplifying assumptions should be more likely to overestimate than underestimate risk so that public health is protected regardless of the other unknown conditions. Even when actual characteristics of a population are known, assumptions on exposure are often biased toward producing over protective rather than under protective health risk estimates for most of the population.

Risk assessment procedures are thus designed to result in a conservative estimate of risk in order to be protective of the majority of the population and to compensate for uncertainties inherent in estimating exposure and toxicity.

Both the carcinogenic and hazard risks were based upon the maximum detected concentration of the chemicals of concern from a single sample point. If a site-wide average of the detected values for the chemicals of concern were used in determining the carcinogenic and hazard risks, the results of the risk assessment would be considerably lower.

In summary, every aspect of the risk assessment contains multiple sources of uncertainty. Simplifying assumptions are made so that health risks can be estimated quantitatively. Because the exact amount of uncertainty cannot be quantified, the risk assessment is intended to overestimate rather than underestimate probable risk. The results of the assessment therefore, are likely to be protective of health despite the inherent uncertainties in the process.

In a letter dated July 27, 2009, the Office of Environmental Health Hazard Assessment (OEHHA) (see OEHHA, 2009) concurred with the above health risk and hazard assessment to future residents and workers from vapor intrusion and concluded that the data were reliable and within an acceptable range for risk management. In a letter dated October 22, 2009, the RWQCB concurred with the OEHHA assessment of the vapor intrusion risk but determined that a land use restriction was necessary (RWQCB, 2009). The deed restriction has been prepared and signed.

4.2.7 Conclusions

A total of 18 VOCs were detected in soil gas samples collected from beneath the Site. A human health screening evaluation was completed using the maximum concentrations of chemicals detected in soil gas at 5 feet bgs and 15 feet bgs as exposure point concentrations. The results of the risk assessment indicate an incremental cancer risk below 10 per million which is typically considered acceptable for commercial development. The hazard quotient is also below the threshold level of 1.0.

Because the incremental cancer risk is above the one per million standard typically considered acceptable for residential development, but below the 10 per million standard typically considered acceptable for commercial/industrial development, deed restriction limits were developed at the Site to industrial, commercial or office space standards, and preclude residences

REQUEST FOR CLOSURE AND SECOND QUARTER 2012 GROUND WATER MONITORING REPORT 11630 - 11700 Burke Street, Santa Fe Springs. CA 90670

for human habitation, hospitals, schools for persons under 21 years of age, and day care centers for children or senior citizens.

5.0 CURRENT GROUND WATER SAMPLING ACTIVITIES

All ground water sampling activities were completed on June 13, 2012.

5.1 GROUND WATER SAMPLING

Prior to initiating any purging or sampling activities, depth measurements to fluid levels in wells MW-1D through MW-4 were obtained using an interface probe accurate to 0.01 foot. Tables 3 and 4 contain the ground water elevation and testing results for hydrocarbons and metals, respectively, and Table 7 contains the well construction details.

Prior to collecting ground water samples for analytical testing, all wells were purged of approximately three well casing volumes of water. Temperature, conductivity, turbidity and pH readings were recorded to evaluate the effectiveness of purging activities (see Appendix A). Samples were collected from just below the water surface using disposable bottom bailers equipped with a volatile organic compound (VOC) sampling tip. The samples were sealed in 40-milliliter volatile organic analysis (VOA) vials with Teflon septa lined lids, one-liter amber glass jars, and 500-ml plastic bottles. Each VOA was completely filled so that no headspace existed between the sample and the lid.

5.2 SAMPLE IDENTIFICATION, DOCUMENTATION, PACKAGING AND SHIPPING

To identify and manage the samples collected in the field, a sample label was affixed to each sample container. Each sample label included the following information:

- Sample identification number
- Date and time of sample collection
- EAI project number
- Name of client
- Name of sampler

Following sample collection and labeling, the ground water samples were placed into a high quality iee chest for temporary storage and transport to the analytical laboratory. The following protocol was used for sample packaging:

- A self-adhesive sample label was placed across the lid of each sample container, acting not only as a sample label but also as a custody seal.
- The samples were placed in leak-proof "Ziploc" plastic bags.
- The samples were then placed into a high quality ice chest that included ice to keep the samples chilled during transport to the laboratory. The drain plug of the ice chest was secured using tape to preclude melting ice from leaking out of the cooler.

- The chain of custody record (COC) forms were placed in a "Ziploc" water-resistant plastic bag and taped to the inside lid of the cooler.
- The samples were kept chilled until delivered to the laboratory for analytical testing.

COC record forms (see Appendix B) were used to document sample collection and shipment to the laboratory for analytical testing. The COC record form identifies the contents of each shipment, the analytical testing to be completed on each sample, and maintains the custodial integrity of the samples.

5.3 DECONTAMINATION PROCEDURES

The pump and hose system (equipment) used only to purge the wells was decontaminated by flushing the equipment with a solution of Alconox detergent and tap water, and flushing the equipment with tap water.

5.4 MANAGEMENT OF WASTES

In the process of collecting media samples during the field-sampling program, potentially contaminated investigation-derived wastes were generated. These wastes included spent personal protective equipment (PPE), and well purging fluids. Spent PPE, e.g., gloves, were double bagged and placed in a municipal refuse dumpster. All well purging fluids were sealed in a labeled 55-gallon drum. The drum remained on the Site pending the results of the analytical testing, at which time the effluent was transported to an approved disposal or recycling facility.

5.5 ANALYTICAL TESTING

All ground water samples were analyzed by Enviro-Chem, Inc. a State of California certified hazardous waste testing laboratory (ELAP No. 1555). Samples were analyzed for TPH-G and TPH-D by modified EPA Method 8015, for VOCs by EPA Method 8260B, for total chromium by EPA Method 200.7, and for hexavalent chromium by EPA Method 218.6. The results of the ground water testing are presented in Tables 3 and 4. The chain of custody records and laboratory reports are contained in Appendix B.

5.6 GROUND WATER ELEVATION MAP

Figure 13 is a ground water elevation map for the Site for June 13, 2012. Ground water flow direction is to the west southwest and is similar to prior ground water flow directions observed at the Site.

6.0 DISCUSSION

Only wells MW-2 (6.15 ug/L) and MW-4 (6.25 ug/L) contain PCE concentrations above the drinking water stand of 5 ug/L and TCE was not detected in any well above the drinking water standard (see Table 3).

The Site is located in an area known to be regionally impacted with chlorinated compounds (see Figure 11). Only minor amounts of PCE and TCE have been detected in site soils at very low concentrations. Of approximately 225 soil samples obtained and analyzed from the Site for PCE, only 10 contained concentrations above the detection limit at a maximum concentration of 0.51 mg/kg and only 6 contained TCE above the detection limit at a maximum concentration of 0.27 mg/kg. Therefore, it is EAI's opinion that the chlorinated compounds detected in ground water beneath the site are a result of the regional impact to ground water and not a result of any activities previously conducted at the Site.

PCE and TCE concentrations in wells MW-1D, MW-3, and MW-4 continue to decline (see Figures 14 through 16). Ground water from well MW-2 is from a perched zone which is periodically dry. PCE from this well has been near drinking water standards since February 2009 with a maximum concentration of 9.37 ug/L observed in December 2011. TCE has not been detected in well MW-2 over the same timeframe (see Table 3).

7.0 REQUEST FOR CLOSURE

For the following reasons, it is EAI's opinion that the Site should be granted closure:

- Of approximately 225 soil samples obtained and analyzed from the Site for PCE, only 10 (4.4%) contained concentrations above the detection limit at a maximum concentration of 0.51 mg/kg and only 6 (2.6%) contained TCE above the detection limit at a maximum concentration of 0.27 mg/kg.
- 2) The Site is located at the edge of a regional PCE plume (see Figure 11) which appears to be the source of the PCE and TCE in ground water at the Site.
- 3) To the extent practical, impacted soil has been removed from the Site.
- 4) PCE and TCE trend analysis indicate that concentrations in on-site ground water continue to decline and are currently near or below drinking water standards (see Figures 14 through 16 and Table 3). This decline in concentrations is consistent with the Site being near the edge of the regional plume (see Figure 11).
- 5) The Site is now covered by a building and concrete parking lot with minor landscaping, thereby greatly reducing the potential to impact ground water at the Site.
- A total of 18 VOCs were detected in soil gas samples collected from beneath the Site. A human health screening evaluation was completed using the maximum concentrations of these compounds resulting in an incremental cancer risk of below 10 per million and a hazard quotient below the threshold level of 1.0. These risks are typically considered acceptable risks for commercial/industrial land use.
- 7) A deed restriction has been placed on the property restricting future use to commercial, industrial, or office usage.
- 8) Engineered fill is present beneath the building.

Therefore, on behalf of Larry Patsouras, EAI requests that ground water at the Site be granted closure.

8.0 LIMITATION

Our professional services have been performed using that degree of knowledge, diligence, care and skill ordinarily exercised, under similar circumstances, by reputable environmental consultants practicing in this or similar localities at this time. This report has been prepared for Larry Patsouras. The conclusions contained in this report are based on information contained and/or referenced herein, and our best judgment. No other warranty, expressed or implied, is made as to the professional advice contained in this report.

9.0 REFERENCES

- Advanced GeoEnvironmental, Inc., "Soil Sampling Following Removal of Underground Storage Tanks, Talco Plastic, Inc., 11650 Burke Street, Santa Fe Springs, California," dated April 1, 1998 (AGI, 1998).
- AIG Consultants, Inc., "Phase I Environmental Site Assessment, Industrial Buildings 11630-11700 Burke Street, Santa Fe Springs, California 90670," dated June 30, 1994 (AIG, 1994).
- American Cancer Society, "Cancer Facts and Figures 1997," dated 1997. The New York Cancer Society (ACS, 1997).
- Amnat Environmental & Geotechnical, "Leak Detection Program (LDP) Report, Talco Plastics, 11650 Burke Street, Whittier, California," dated September 1995 (AEG, 1995).
- Biophysics Environmental Assessments, Inc., "Soil Remediation Work Plan, El Greco, Inc., 11630-11700 Burke Street, Santa Fe Springs, California," dated June 29, 2006 (BEA, 2006A).
- Biophysics Environmental Assessments, Inc., "Addendum to Soil Remediation Work Plan, El Greco, Inc., 11630-11700 Burke Street, Santa Fe Springs, California," dated July 26, 2006 (BEA, 2006B).
- Biophysics Environmental Assessments, Inc., "Soil Remediation Report of Findings for El Greco, Inc., 11630-11700 Burke Street, Santa Fc Springs, California," dated September 14, 2006 (BEA, 2006C).
- California Environmental Protection Agency, "Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities," dated August 1996 (Cal-EPA, 1996).
- California Environmental Protection Agency, "Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties," dated January 2005 (Cal-EPA, 2005).
- California Regional Water Quality Control Board, Los Angeles Region, "Guidance for VOC-Impacted Sites: Soil Screening Levels," dated March 1996 (RWQCB, 1996A).
- California Regional Water Quality Control Board, Los Angeles Region, "Guidance for Petroleum-Impacted Sites: Soil Screening Levels," dated May 1996 (RWQCB, 1996B).
- California Regional Water Quality Control Board, Los Angeles Region/Department of Toxic Substances Control, "Advisory-Active Soil Gas Investigations," dated January 28, 2003 (RWQCB, 2003).

- California Regional Water Quality Control Board, Los Angeles Region, Letter titled "Requirement to provide Technical Report Pursuant to the California Water Code Section 13267, The Property Located at 11630 11700 Burke Street, Santa Fe Springs," dated October 22, 2009 (RWQCB, 2009).
- City of Santa Fe Springs, "Soil Assessment and Remediation Guidelines for Commercial/ Industrial Sites," (City Soil Guidance).
- Department of Toxic Substances Control, "Preliminary Endangerment Assessment Guidance Manual," dated January 1994, second printing June 1999 (DTSC, 1999).
- Department of Toxic Substances Control, "Interim Final, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air," dated December 15, 2004, Revised February 7, 2005 (DTSC, 2005A).
- Department of Toxic Substances Control, "Arsenie Strategies, Determination of Arsenic Remediation, Development of Arsenic Cleanup Goals," dated January 16, 2009 (DTSC, 2009).
- Environmental Audit, Inc., "Preliminary Draft, Remedial Investigation, 11630-11700 Burke Street, Santa Fe Springs, California," dated December 22, 1994 (EAI, 1994).
- Environmental Audit, Inc., "Subsurface Investigation Report, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated December 18, 1995 (EAI, 1995).
- Environmental Audit, Inc., "Supplemental Subsurface Investigation, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated March 13, 1997 (EAI, 1997).
- Environmental Audit, Inc., "Report on Soil Sampling and Testing, 11630-11700 Burke Street, Santa Fe Springs, California," dated March 1, 1999 (EAI, 1999).
- Environmental Audit, Inc., "Remedial Investigation Work Plan, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated November 3, 2008 (EAI, 2008).
- Environmental Audit, Inc., "Remedial Investigation Work Plan Addendum, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated January 16, 2009 (EAI, 2009A).
- Environmental Audit, Inc., "Report on Closure of Subsurface Units, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated March 2009 (EAI, 2009B).
- Environmental Audit, Inc., "Summary of Site Assessments, Soil Gas Survey, Human Health Screening Evaluation, and Work Plan, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated March 2009 (EAI, 2009C).
- Environmental Audit, Inc., "Removal of Clarifier Unit 6, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated March 9, 2010 (EAI, 2010A).

- Environmental Audit, Inc., "Soil Management Plan, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated July 22, 2010B).
- Environmental Audit, Inc., "Final Report on Discovery/Removal of Concrete Vaults on the West Parcel of the Site, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated December 10, 2010 (EAI, 2010C).
- IRIS Environmental, "July 2008 Quarterly Sampling Report, Phibro-Tech, Inc., Santa Fe Springs, California," dated October 27, 2008 (IRIS, 2008).
- Office of Environmental Health Hazard Assessment, Letter titled "Review Memorandum for Summary of Site Assessments, Soil Gas Survey, Human Health Screening Evaluation, and Work Plan," dated July 27, 2009 (OEHHA, 2009).
- Pacific Edge Engineering, Inc., "Semi-Annual Groundwater Monitoring & Soil Remediation Progress Report, April 2008 (SLIC No. 383), Pilot Chemical Company, 11756 Burke Street, Santa Fe Springs, California," dated June 2008 (PEE, 2008).
- Professional Service Industries, Inc., "Phase II Preliminary Contamination Assessment, 11630-11700 Burke Street, Santa Fe Springs, California," dated August 18, 1994 (PSII, 1994).
- Santa Fe Springs Fire Department, Letter titled "Closure of Subsurface Units Not Regulated as Underground Storage Tanks, 11630-11700 Burke Street, Santa Fe Springs, 90720," dated April 16, 2009 (SFSFD, 2009).
- Santa Fe Springs Fire Department, Letter titled "Closure of Clarifier Unit 6, 11630-11700 Burke Street, Santa Fe Springs, 90720," dated March 18, 2010 (SFSFD, 2010).
- United States Environmental Protection Agency, "ProUCL Version 4.0 Technical Guide, EPA/600/R-07/041," dated April 2007 (EPA, 2007).
- United States Environmental Protection Agency, Region IX, "Regional Screening Levels for Chemical Contaminants at Superfund Sites," dated May 20, 2008 (EPA, 2008).
- Water Replenishment District of Southern California, "Central Basin Groundwater Contamination Study," dated December 11, 2007 (WRD, 2007).

TABLES

TABLE I
HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

Original in Color

		T	(8015M) (418.f) (8020/8240/8260B)																						
				(9015141)		(+10.1)			Ethyl	Isopropyl-			Methylene		(80			n-Propyl		p-Esopropyl	sec-Butyl				
Firm	Samples ID	Date	TPH-G	TPH-D	TPH-O	TRPH	Toluene	Xylenes	benzene	benzene	PCE	TCE	Chloride	Acetone	TCFM		benzene		Naphthalene		benzene	MEK	1,2,3-TCP 1,	2,4-TMB	1,3,5-TMB
WEST PA	RCEL - UNDERG	ROUND S	TORAGE 1	ANKS																_					
EAI	E-1@4-6'	11/29/94	<10	<10		<5	< 0.005	<0.01	<0.005	NA	NA	NA	NA	NA	NA	ÑΑ	NA		NA			NA	NA	NA	NA
	E-1@9-11'	11/29/94	<10	<10		22	< 0.005	<0.01	< 0.005	NA	NA	NA	NA NA	NA	NA NA	NA	NA		NA	ÑΑ		NA	NA	NA.	NA
	E-1@14-16' E-1@19-21'	11/29/94	<10	<10 <10	NA NA	32	<0.005 <0.005	0.0481 <0.01	<0.005 <0.005	NA NA	NA NA	NA. NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA
	E-1@19-21 E-1@24-26'	11/29/94	<10 <10	<10		15	<0.005	<0.01	<0.005	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA	NA	NA NA
	E-2@4-6'	11/29/94	<10	<10	NA	NA NA	<0.005	<0.01	< 0.005	NA	NA	NA	NA.	NA	NA.	NA	NA.		NA	NA NA		NA	NA	NA	NA
	E-2@9-11'	11/29/94	<10	<10	NA	NA	< 0.005	< 0.01	< 0.005	NA	NA	NA	ΝA		NA	NA	ŇA		NA	ÑА		NA	NA	NA	NA
	E-2@14-16'	11/29/94	<10	<10	NA	NA	<0.005	<0.01	< 0.005	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NΑ		ÑΑ	NA	NA	NA
	E-2@19-21'	11/29/94	<10	<10	NA	NA	< 0.005	< 0.01	< 0.005	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	ÑA
	E-2@24-26'	11/29/94	_<10	<10	NA	NA	< 0.005	< 0.01	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA		NA	<u>NA</u>	NA	NA	NA	ΝA	NA
	E-3@4-6'	11/29/94	<10	<10	NA	NA	<0.005	< 0.01	< 0.005	NA	NA	ÑΑ	NΑ	NA	NA	NA	NA		NA NA	NA.		NA	NA	NA	NA
1	E-3@9-11'	11/29/94	<10	<10		NA	<0.005	< 0.01	< 0.005	NA	NA	NA	NA	NA	NA	NA NA	NA		ŇΑ	NA NA		NA	NA	NA	NA NA
	E-3@14-16'	11/29/94	<10	<10	NA NA	NA NA	<0.005 <0.005	<0.01	<0.005 <0.005	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA		NA NA	NA NA	-	NA NA	NA	NA NA	NA NA
	E-3@19-21' E-3@24-26'	11/29/94	<10 <10	<10 <10		NA NA	<0.005	<0.01	<0.005	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	E-4@4-6'	11/29/94	<10	<10	NA	NA NA	<0.005	<0.01	< 0.005	NA	NA	NA	NA.	NA.	NA NA		NA		NA NA	NA NA	$\overline{}$	NA	NA	NA NA	NA NA
	E-4@9-11'	11/29/94	<10	<10	NA		< 0.005	< 0.01	< 0.005	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
	E-4@14-16'	11/29/94	<10	<10			< 0.005	< 0.01	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	E-4@19-21'	11/29/94	<10	<10	NΛ	NA	< 0.005	<0.01	< 0.005	NA	NA	NA	NA	ÑΑ	NΛ	NA	NA	ÑΑ	NA	NA	NA	NA	NA	NA	NA
	E-4@24-261	11/29/94	<10	<10	NА	NA	< 0.005	< 0.01	< 0.005	NA	NA	NA	NA	NΆ	ŅΑ	NA	NA	_ NA	NA	NA	NA	ΝA	NA	NA	NA
							1																		
AGI	B1A@14.5'	03/24/98	<0.5	NA		NA	< 0.005	<0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA.		NA	NA	NA	NA
s la s	B1B@14.5'	03/24/98	<0.5	NA <10	NA NA	NA 10	<0.005	<0.005	< 0.005	NA NA	NA	NA NA	NA	NA	NA	NA	NA		NA NA	NA NA		NA	NA	NA NA	NA
USTs Removal Samples	B2A@14.5' B2B@14.5'	03/24/98	<0.5 <0.5	<10 <10		<10 <10	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	_	NA NA	NA NA	NA NA	NA NA
S S	B2C@14.5'	03/24/98	<0.5	<10	NA NA	<10	<0.005	< 0.005	< 0.005	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA	NA NA	NA
WEST PA	RCEL - CLARIF					10	-0.005	-0.005	-0.003	1111	1111		1111	1171	14,1	1147	, , , ,	11/1	7.7.1	1111	1171	117.1	1113		
PSII	HA-2@10'	08/04/94	<3	<3	<3	NA	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013		0.0056J	< 0.0026	< 0.0013	< 0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0026	0.0033	< 0.0013	< 0.0013
	ILA-3@4.5'	08/04/94	<3	<3	<3	NA	< 0.0013	< 0.0013	< 0.0013	< 0.0013	<0.0013	< 0.0013	0.003J	< 0.0026	< 0.0013	< 0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0026	< 0.0013	< 0.0013	< 0.0013
EAI	F-5@4-6'	11/29/94	NA	NA		<5	<0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	NA	<u>NA</u>		NA	NA	NA NA	< 0.025	NA NA	NA	NA
	E-5@9-11'	11/29/94	NA NA	NA		<5 <5	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.01	NA NA	NA NA		NA NA	NA		<0.025	NA NA	NA NA	NA NA
	E-5@14-16' E-5@19-21'	11/29/94	NA NA	NA NA	NA NA	11	<0.005 <0.005	<0.01 <0.01	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.01 <0.01	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.025 <0.025	NA NA	NA NA	NA NA
	E-6@4-6'	11/29/94	NA NA	NA	NA NA	11	<0.005	<0.01	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.01	NA NA	NA NA	NA NA	NA	NA	NA NA	<0.025	NA	NA	NA
	E-6@9-11'	11/29/94	NA.	NA		<5	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	<0.01	NA	NA		NA	NA.		< 0.025	NA NA	NA	NA
	E-6@14-16'	11/29/94	NA	NA	NA	<5	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	NA	NA		NA	NA		<0.025	NA	NA	NA
	E-6@19-21'	11/29/94	NA	NA	NA	<5	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	NA	NA	NA	NA	NA	NA	<0.025	NA	NA	NA
	E-6@24-26'	11/29/94	NA	NA	NΑ	<5	< 0.005	< 0.01	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	NA	NA	NA	NA	NA	NA	<0.025	NA	NA	NA
T 4 (0.2016	02/10/02	\$7.1		.,.	امد		-0.01		ا ده ه۔	ا ده ه.	ا م م .		.,.1	ا نہ مہ	ا - م م.	-4.4-	اءه ه.	1.00	Α Α.			انمم	الممي	-0.04
EAI	S-3@10'	02/10/99	NA NA	NA NA		<10 <10	<0.01	<0.01	<0.01 <0.01	<0.01	<0.01	<0.01	<0.05 <0.05	NA NA	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	<0.01	<0.01	NA NA	<0.01	<0.01	<0.01 <0.01
	S-4@10' S-5@10'	02/10/99	NA NA	NA NA		<10	<0.01	<0.01	<0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.05		<0.01	<0.01	<0.01		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	NA NA	<0.01	< 0.01	<0.01
	S-6@10'	02/10/99	NA NA	NA NA		<10	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	NA NA	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	NA NA	<0.01	<0.01	<0.01
	S-7@10'	02/10/99	NA NA	NA NA	NA NA	<10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05		<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	NA.	<0.01	<0.01	<0.01
	S-8@10'	02/10/99	ŅA	NΑ	NA	<10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.05	-	<0.01	< 0.01	<0.01		<0.01	< 0.01	<0.01	NA	<0.01	<0.01	<0.01
	Pit@6'	02/10/99	NA	NA	NA	<10	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.05		< 0.01	<0.01	<0.01		<0.01	< 0.01	<0.01	NΑ	<0.01	< 0.01	< 0.01
WEST PA	RCEL - MECHA		Γ																						
EAI	E-16@5'	12/01/94	NA	NA		16	< 0.005	<0.01	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.01	NA	NΛ		NA	NA		< 0.025	NA NA	NA	NA
ER (27/2000 PT - 1	E-16@10'	12/01/94	NA	NA NA	NA	9	<0.005	< 0.01	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	NA	ÑΑ	NA	<u>N</u> A	NA.	NA	<0.025	NA	NA	NA
	RCEL - MAINTE				11 5	314	-0.0012	<0.0012	Z0.0013	<0.0013	<0.0012	<0.0013	0.0063	<0.000c	~0.0010	~0.0010	-A 0010	<0.0013	-0 0012	~0.0010	~0.0010	Z0 000 C	-0.0012	<0.0012	<0,0013
PSI	B-5@4'	08/03/94	<3	<3	11.7	NA	<0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	<0.0013	0.0064	<0.0026	<0.0013	<0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0026	<0.0013	<0.0013	<0.0013
EAI	E-17@5'	12/01/94	NA	NA	NA	9	< 0.005	< 0.01	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.01	NA	ΝΛ	NA	NA	NA	NA	<0.025	NA	NA	NA
	E-17@10'	12/01/94	NA	NA			< 0.005	< 0.01		<0.005	< 0.005	< 0.005		< 0.005	<0.01		NA		NA.	NA		<0.025	NA NA	NA	NA
1	E-17@15'	12/01/94	NA	NA			< 0.005	<0.01	< 0.005	<0.005	< 0.005	< 0.005		<0.005	<0.01		NA		NA	NA		<0.025	NA	NA	NA
1	117(43.13	X ZI V XI Z	141.5	1875	1117		10.000	10.01	-0.002	10.000	10.003	~0.00J	10.000	~0.000	-0.01	1,117	1411	2 17 2		4 - 1 ^	X 11 11	10,025	1,12	7,112	NA

l of 6

TABLE 1 HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670 (concentrations in milligrams per kilogram - mg/kg)

Original in Color

				(8015M)		(418.1)									(802	20/8240/826	(0B)								
				(0015.11)	+	(420,17)			Ethyl	Isopropyl-			Methylene		(002	n-Butyl		n-Propyl		n-Isopropyl	sec-Butyl			$\overline{}$	
Firm	Samples ID	Date	TPH-G	TPH-D	TPH-O	TRPH	Toluene	Xylenes	benzene	benzene	PCE	TCE	Chloride	Acetone	TCFM	-	benzene	1	Naphthalene	toluene	benzene	MEK	1,2,3-TCP 1	.2.4-TMB	1.3.5-TMB
								,	4,				4					<u> </u>					.,_,.	, , ,	-1-1-
EAI	S-1@10'	02/10/99	NA	NA	NA	<10	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.05	NA	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	NA	< 0.01	<0.01	< 0.01
	S-2@10'	02/10/99	NA	NA	NA	<10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.05	NA	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	NA	<0.01	< 0.01	< 0.01
WEST PARCEL - EQUIPMENT STORAGE (Stained Area)																									
PSII	HA-4@2'	08/04/94	<3	<3	<3	NA	< 0.0013	< 0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	0.0021J	< 0.0026	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0026	< 0.0013	< 0.0013	< 0.0013
WEST PA	ARCEL - REMOV	ED STORM	WATER C	CLARIFIER		•			·						•										
EAI	S-9@10'	02/10/99	NA	NA	NA	<10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	ΝA	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA	< 0.01	< 0.01	< 0.01
	S-10@10'	02/10/99	NA	NA	NA	<10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	NA	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	NA	< 0.01	<0.01	<0.01
WEST PARCEL - WELLS MW-3 AND MW-4																									
EAI	MW-3d10	06/30/09	<0.1	<10	NA	NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.020	< 0.005	< 0.005	< 0.005
	MW-3d20	06/30/09	<0.1	<10	NA	NA	< 0.005	< 0.01	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
	MW-3d30	06/30/09	<0.1	<10	NA	NA	< 0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.020	< 0.005	<0.005	< 0.005
	MW-3d40	06/30/09	<0.1	<10	NA	NA	< 0.005	< 0.01	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
	MW-3d50	06/30/09	<0.1	<10	NA	NA	< 0.005	< 0.01	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
	MW-3d60	06/30/09	<0.1	<10	NA	NA	< 0.005	< 0.01	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	<0.005
	MW-4d10	06/30/09	< 0.1	<10	NA	NA	< 0.005	< 0.01	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
	MW-4d20	06/30/09	<0.1	<10	NA	NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.020	< 0.005	<0.005	< 0.005
	MW-4d30	06/30/09	< 0.1	<10	NA	NA	< 0.005	< 0.01	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	MW-4d40	06/30/09	<0.1	<10	NΑ	NA	<0.005	< 0.01	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.020	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	< 0.005
	MW-4d55	06/30/09	<0.1	<10	NA	NA	< 0.005	< 0.01	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
	MW-4d65	06/30/09	< 0.1	<10	NA	NA	< 0.005	< 0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
WEST PA	ARCEL - SITE AS	SESSMENT	SAMPLES	(December	2009)																				
EAI	D-4d5	12/07/09	NA	NA	NA	NA	< 0.005	< 0.01	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.020	< 0.005	<0.005	< 0.005
	D-4d10	12/07/09	NA	NA	NA	NA	< 0.005	< 0.01	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.020	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< <u>0</u> .020	<0.005	<0.005	< 0.005
I	D-4d15	12/07/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.020	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	<0.005	< 0.005
	D-4d20	12/07/09	NA NA	NA	NA	NA	<0.005	< 0.01	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	<0.005
	D-4d25	12/07/09	NA	NA	NA	NA	< 0.005	<0.01	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005
	D-4d30	12/07/09	NA	NA	NA	NA	< 0.005	< 0.01	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
	D-4d35	12/07/09	NA	NA NA	NA	NA	<0.005	< 0.01	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	< 0.005
	D-4d40	12/07/09	NA	NA	NA	NA	< 0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.020	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	< 0.005
	D-4d45	12/07/09	NA NA	NA	NA	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
1	D-4d50	12/07/09	NA	NA	NA	NA NA	<0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.020	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	< 0.005
	D-4d55	12/07/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	< 0.005
	D-4d60	12/07/09	NA	NA	NA	NA	< 0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0. <u>005</u>	< 0.005	< 0.020	<0.005	< 0.005	< 0.005
	D-4d65	12/07/09	NA	NA	NA	NA	<0.005	< 0.01	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.020	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.020	< 0.005	<0.005	< 0.005
	D-4d70	12/07/09	NA	NA NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	< 0.005
																	_	_							
EAI	B-2d5	12/08/09	NA NA	NA	NA	NA	<0.005	< 0.01	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.020	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.020	< 0.005	<0.005	<0.005
	B-2d10	12/08/09	NA	NA	NA	NA	< 0.005	< 0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020	< 0.005	< 0.005	<0.005
1	B-2d15	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005
	B-2d20	12/08/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005		< 0.005	< 0.005	<0.005	< 0.020		<0.005		< 0.005	< 0.005		< 0.005	< 0.020	<0.005	< 0.005	< 0.005
	B-2d25	12/08/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.020	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	< 0.005
	B-2d30	12/08/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.020	< 0.005	<0.005	< 0.005
	B-2d35	12/08/09	NA NA	NA	NA	NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005		<0.005	<0.005	<0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
	B-2d40	12/08/09	NA NA	NA	NA NA	NA	<0.005	< 0.01	<0.005	<0.005	<0,005	<0.005	<0.005	< 0.020	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
	B-2d45	12/08/09	NA NA	NA	NA	NA	<0.005	< 0.01	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
	B-2d50	12/08/09	NA	NA	NA	NA	< 0.005	< 0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020		<0.005		<0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005
	B-2d55	12/08/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	<0.005	< 0.005
	B-2d60	12/08/09	NA	NA	NA	NA NA	<0.005	< 0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005	< 0.005
	B-2d65	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	B-2d70	12/08/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	< 0.005

XL:1576:SOILDATA-HISTHYDROCARBONS-2 Revised PE

IMBLE 1 THRECORDERAL (1994) 2000) SOIL TEATING RESIDERS IN DRIVEN REDONS 11630 - 11700 Banks Street, Saria de Sprides CA 20070 (decembring it will grans her la regum - my/kg)

Artshallo Tour

	1	1		(9715M).		(4/8/1)									Ü1072	this arista	10 N								
		1	-776		1			0 4 9	Rativi	Бириспуы		1 4447	Methylau		4	15-Birt	sec-Unity i	n-Vennyl		e Tsupropyl	sec-Bury!		10000	1000	
0.0	Samples III	Onte	TPH-C	TPH-D	TPHOT	TREA	Toluene	Xylenes	hanzene	Белисье	POE	rec	Chloride	Againme	TOFM	bennend	Contrave	0.0000000000000000000000000000000000000	Naphibulmo	falmene	herazewe	MEK	1,2,1-TOP /	24TVB	1,370
	B-345	13/28/09	NA.	No.	68	'NA	-0,005	52,01	~0aus	~53.000	40,002	-16 093	<0,005	40,023	20,005	<0.003	(0,003	<0.0002	<0.002	40,005	-00.005	~40,000	<0,075	× 0,008	>000
	M-SALC	12008000	194	NA.	250	191	-0.005	≥"01	000005	<0.003 (0.003)	4000	10,005	>0.002	~(f),(CC))	-mccns	<0.000	-f.n3:	90000	-30.00%	<0.005	40 003	< 0.023	<3.055	n00006	<110
	D-2313	12/08/09	N/A	N/A	MA	MA.	-11.0003	40.01	+0.005	:::0::15	cutter	-20 0.13	11,1105	<0.020	<0.005	⊸attaas	-01.075	+0.603	20.00S	=40.00S	40 (0)3	-08/3/201	×8.005	<0.005	<:tt
	B-3/(20	12/08/09	Na.	F0%	- NA	NA.	~0.005	<000	-00 CDS	~0.035	>0.00%	20.083	<0,005	<0.053	SOTEDS.	~2005	<0,037	×0.005	~40,005	~0,005	The Property of the Park of th	<0.03	<3,105	>80 005	×91
	N 2423	120(8)001	396	N/A	NA	NA.	<0.005	≈180f	<00,05	49,675	407,005	45,015	47,005	×0.020	-04,05	-s6,605	<80005	-00 (103)	≈£0,003	<1/005		± 40,628	<0.005	40,1,05	<0.00 +0.00
	H-30/20	12/08/09		N/C	HA	NA NA	<0.005	<0.01 <0.01	20105 20105	The second second	40.003	~0.035 ~0.035	<0.005 <0.005	≈0.020 ≈0.020	-0.05 -0.05	-0.005	<0.085 <0.085	*:0.003 *:0.003	-10.003 -10.003		*0.003 *0.003	~0.020 ~0.020	<0.005 <0.005	≈0.005 ≈0.005	*2.0 *0.0
	B-Selati	12/05/09	16/4	NA.	NA	NA.	-0,005	-c0.01	40,005		40.003	<0.025	-20,005	100,020	01105	-03 DAN	~15005	50 IDS	(2),005	=0.005	40.002	+:0,020	-81,005	40,005	=1/D
	8-3v ()	12/08/09	19A	NA	75A	NA.	<0.000	-0.00	-47 COS	0.035	0.005	00 003	=11005	=0.080	OTCROS	48,100	<0.000H	<0.003	<0.013	-0.005		<0.020	<8.000	00165	40.0
	D-1456	12/08/09	NA	11/1	25%	14.5	< 0.005	40.01	50.505		40,002	30.0%5	-40,005	×00020	000.053	<0.006	~6 005	×60,003	20,003	×11005	40.0%	+:0.020	<0.005	50.005	×1000
	B-3d55	12/08/07		NA.	2/8	Na	40,085	≤0,01	~01,615	48,035	×0.062	-0.003	-40,005	~#J,(g)(40,005	<0,003	-05,005	H04003	40,005	FF 005		~9J,80[0]	~0,005	×0,005	×30
	8-146C	12/08/09	- 性格 Na	NΛ	346	13/	<0.005	<0.01	40005	*13.005	-0.00%	40.025	<0.00S	~0.070	-call(05	×3.075	-0.000	9-D-2003K	~10.015	<0.0005	*0.004	-0.023	<0.035	*0.00	<3.6
	D-3365	1203009	NA NA	- NV	SA	- NA	-41.005	<0.01	-00005	-::0:13	<0.000	40.0%	<40005	(2(1)21)	50,505	<0.005	×0.005	50.003	<0.605	01.905	2/10/01/5	003273	-300035	10,005	<\$600 ≤600
	B-3d70	12708/07	NA	.Ns	NA	NA	~00,005	<0.01	-<0,005	×8.005	>00009	>:00000	<4.005	<0),(0%)	×01.605	<3,000	*0,005	<0,005	~97,0005	<0.005	<0.005	~0),023	<0.005	>£0,005	$\times 0.0$
															-									-	
	2-3ds	12/08/09	NAT	- NA	NA	NA.	50.005	347.01	<0.05	48.035	-30003	-32,0%2	~70.095	40.02%	40,505	=:1U00S		<0.003		~11.005	<19'00'S	49,020	~0.005	~31.005	<:20
	5-3410	12/08/00	PA	NA.	ÑA	- Na	<0.005	<0.01	<0.005	× 9 00%	×0.000	>8.035	<3,005	<0.000	>±0.€05	< 8,005	~8.065	×0.005	~0.007	<0.005	>0.002	-01.650	<0,034	20,005	×0.0
	ORALL	12/(\\$/\)/9	197	- 194	A/G	100	200005	-7701	40,005		5000051	CK,0%3	×97(0)5	40:028	<0.102	-7,3705	<0.0005	<0.005	*20:005	-1,005		#0.11211	-40,005	-:0,025	~9.0
	C-9(x8)	19/08/09	MA	- MA	8A 8A	NA.	<0.005 <0.005	< <u>1001</u>	40,005 40,005	40.000	*fb(003]	~02.003 ~0.003	<0.005	**(1,129)	<0.003 <0.003	-0.003 -0.005	~10,005 ~0.005	×0.002	*0.000 ******	<0.005 <0.005		~U 828	<0.0001 <0.005	F0.005	~00
	S-JeDir 25-75-70	12/08/09	NA NA	N/.				<0.01	400.05	<0.000000 0.000000000000000000000000000	×0.065	F000%	<0.005 -0.005	+0.021	<0,005	40.005	<0,005 <0,005	<0.003	30 (A14) -30,000	-00,00S	<0.005	<0.020 -0.0020	49,005	20.055	×0.0 <0.0
	C-9d/a	12/08/02	NA MA	NA.	NA NA	NA.	-0.003	*L01	01.005	*0.00s	of office	00003	<0.005	-0.000	020005	~0.005	<	*0.000	×0.005	=0.003 =0.003	800 108	< 0.000	=3.004	<0,005 00,005	42.0
	50d±0	12/08/09	NA	N/L	MA	NA.	17.0.6	40.01	±0.005	×#.0/3	:0.005	A0.003	<0.005)	10.020	×0.605	40.005	-05005	*0.003	×03,005	<0.005	×0.005	~10.821/	<40.005	+.0.005	40.0
	2300	12/08/09	Jule.	DA	1995	NA	<0,005	<0.01	#0,00S	<95,095	+0.003	-6.000	<0.005	→40:0Z0	<0.005	<0.005	40,005	49-001	-0.005	-00.005		19.020	09,000	-30,005	×4500
	0.4450	126800	742	NA.	147	147.	<0.005	=(7.70)	400005	~0.003	e0000s	40.003	<.1105	=10.000	001005	~0.003	<8241	40.003	~0.00m	-0.7dh	r0 00s	<0.000	<00035	00 pos	25.6
	22 15 15 15	12/08/09	6/8	N/S	NA.	NA.	40,005	3501	+00/05	=:0.035	<0.00002	CC.0%2	40,005	~0h02%	0.805	>0.005	00.005	*0.003	=20.005	<1.005	= 10.003	200(E)	- cations	~0.405	×20.0
	£-3(15)	1300800	546	N8	1975	- 194	<0,005	-<00T	<0,005	¥8.035	>400.00s	F(1005	~0.00p	<0.020	RUICUS	>40,000	-0.0005	420/003	~40.005	<0,005	0.002	×40.020	~6,005	×0,005	×40.00
	6-1603	1208009	1334	INA	376	NΛ	> 0005	10:0>	400.05	~0.005	~5 00sf	7.005	40.005	><1:09:0	-20,005	一首,前55	<3.50:	60 (II)	~0.005	≪£ 005	= ~0 ms	<0.028	<8000m	<0.005	30.0
	U-3071	120.8/09	10%	308	384	NA	18,005	30.01	<0.805	<0.002	407 (1072)	-40,0003	70.005	<0.020	o) 1/02	<8.005	2005	*00.003	-0.005	41,005	the state of the s	(0.1721)	300035	< 0.005	≥4.0
_		MAXIMUSE	ND	שא	11,7	98	ND	0,0483	DD	NU	500	NU	0,0064	160	- ND	- 50	TND	ND	שאר	ND	NO.	ND	0,0033	20	Ŋ
10.19	ARCEL - SLORA	420CS11E1T		_				-					_							_		12.	-	_	
-	H4=1@D	0.8/91/02	e87031	<4,606	20,000 [NA.	ea.co(3)	20.0017	46.00.3	<anoint< td=""><td>- othorist</td><td>×0.00141</td><td>arabit.</td><td>-01</td><td>20 B 3</td><td><0000 j</td><td>- <0.0003</td><td>×0.76.313</td><td><0.0013</td><td>- <0,00i ≥</td><td>*#01/3</td><td>Fractive</td><td>enting.</td><td>WC 35-5</td><td><0.00</td></anoint<>	- othorist	×0.00141	arabit.	-01	20 B 3	<0000 j	- <0.0003	×0.76.313	<0.0013	- <0,00i ≥	*#01/3	Fractive	enting.	WC 35-5	<0.00
	E-8505+0"	1,1,00094	MA	NA.	54	-65	-10005	:001	771,000	£0.103	c000003	00 H28	-0.00b	<0.000	27.01	WV		3A	MA	- VVV	3A		2A	8.4	N
	ESGIO, I	11/20/94	NA	NA.	3/4	S	<0.005	10.05	*01.05		×10(103)	10,065	<0.005	×4,008	-25°E1	NA	NA	SA	NA	NA.		-30 D25	No.	NA.	
	E-80013-13	11/30/9	18A	MA	- NA	42	0,085	10.01	e3,005	40,000	40,002	-Curs	13,095	~3,005	<0.01	1940	NA.	- 54		MA		93,623	76.A	MA	1
	0.450041 1.95656	11/00/04	AAT AAT	NA NA	200	1.330	=0.005 -04,075	3.025	= <0005 <0005	<0.003	900 0Da 900 002	-40 0f3 40,073	<00f0h <0005	=10 00%	-300 -300	AR	NA NA	- 5A - 5A	MA NA	NA NA	NA NA	~0.09h /0.025	NA NA	NA NA	74
	F-05010-01	12/30/94			the second secon	18,500		9.57	0.384	the second second	0.001	2.00	-0,005	×3.105	-				-M2						
	E-9/015-16	11/3/094	NA NA	- NA NA	NA	37,000	1.09	261	0,287	40.005	0.023	0.032 6.042	43,005	×0.005	<0.01	- NA 18A	AM.	- 32	NA	NA NA	SA	90.005 90.035	NA NA	MA NA	1
	E-9/220-21	11.60%	MA	NA	284	16.300	7.017	0.8625	0.0079	<0.033	00050	<0.000	<0.005	+K00X03	53.01	PM		864	MA	NA			- NA	NA.	- 16
	E-9/2024-25	1.1/30/04	NA	N/A	SCA	La 809	<0.005	<0.00	40,005	The second secon	0.668	>40,005	<0,005	<0.000	<001	198		394	NA.	NA			34	NA.	-7
	E95030-31	11/10/94	NA.	.NA	24	14.500	40,025	(0) (0)	01,005		0.104	<07.0f(s)	40,005	-200003	-20,011	THA		201	NA.	NA.		70,1,25	359	1770	- 6
	E-11(MS-0)	41/00/04	MA	NA.	62	MA	4000 m	<0.01	70.00	+0 gg\$	- decort	200008	=0.003	< 0.000	53.01	ASL	NA.	3/4/		- NA		~40.025		NA.	E
	医自然性的	11210194	NA.	MA	284	NA.	<0.0%	40.00	20,005	300 fise	<0.005	*C.032	< 0.005	<0.009	-40.01	NA.	NA.	10 N	NA.	MA	137	220.00m	85	MA	140
	E-11/212-16	12/30/8/1	N.a.	NA.	3.4	NS.	40,095	40.00	<0,005	<0.005	10,002	>60002	~0,005	×3,009	30,01	NΛ	20%	SA	NA.	1865		<0.025	35.A	193	T
I V	ARICKI - ABAMU		THE FARE	-51		SAVI	-moonel	-mount	-0.0055	La moral	SHOULE	ar chial	Antoni II	- 11 v. 0.100)	as alles	- ATMINIST	-0.000	anners.	- e llevel	Al-Modes	-0.0003	and muscal		-ANDERSIT	
	(B-7) \$ 10	0.5404/04	03,000	-3 -3,000	35,800	NA.	#0.00013 #0.0003	<31'013 <1013	=10 00013 =10 00 3	≈0.0012 ≈0.0012	0,8622	<0.6012 9,27	0.0071		<0.0012 <0.0012				40.000			<0.0026 <0.0006		48403	474.00
	n 7/g; 5'	E8064/94	<300	<1000 e1000	12,330	γiA		<0.0013	<0.0013	-000012	0,27	0.0061	0.0018		×0.0012	0.529 <0.00 5	40,0013 40,0013		-0.290 -0.3013	<0.570 <0.0013		<0.0026	<0.0013	<0.0018	4(090
	B-76880	080000	1975	NA	12,030	NA.		703013	#11.000 A	~0.0012	U/(7)	63082	0.0006	-9 0020	0.00397	40.3E13	-000013	40.0013	10.0003	<0.0000 <0.0003		<0.0028		<0.000m	-41(3)
	B-5/2/25	LANCE ME	×200	-7200		110	-97,0013	<0.6013	40.0013	20.0011	0.374	0.00002	Thole		90 d3 3	<0.00	×0,0013		<0.3013				<1.0012	*0.00.3	×1100
	D-76925	080000	43	<d< td=""><td></td><td>NA</td><td></td><td>-90,00013</td><td>40,0003</td><td></td><td><0.0203</td><td><2,0013</td><td>0,0063</td><td></td><td>40,023</td><td>-0,00°</td><td>~0,0012</td><td></td><td>-0.8013</td><td></td><td></td><td>00 10026</td><td></td><td>40,0003</td><td>42,001</td></d<>		NA		-90,00013	40,0003		<0.0203	<2,0013	0,0063		40,023	-0,00°	~0,0012		-0.8013			00 10026		40,0003	42,001
	In this is	Turney		-2	41051	1473	2,6213	Afterior -	2 2042	- Sange	100	200.445	24000	Authorit	A BROOM	Sept.	2000012	more e	- WWW. II.	A15501	4030110	- Symmetry	-115-23-	20,40,000	19000

· "Insulated Moster Section rest for Julie

TARLET HISTORICAL (1951-2010) SOLE LESTING HESCHIS - HYDROGARDONS 11830 - 11700 Buck Sulet, Spirk Respirings, CA 20870 (Solventation in miligator parkings) - mg/kg:

Ongholi to Color.

<i>-</i>				1901500	-	(3/8.1)		- 7	Sec. 1	er			Laurence .	-	(90	20/A240/A200							-		
	Samuel Dr. IPS	Treasur	med é	90000	(V)96-65	TRPH	Toluene	Sielenus	(Fig.)	Isanvang's-	PCE	TER	Megnytany Chimide	Austine	TOPM	henzene	sec Burgi	n Panpyi	A STATE OF THE STA	L-publicably	sus-Brigh	Santa	V = 3 99 99	Tr. A. Towards.	4.E. Ph.
21	Sourgles ID	11/50394	1101-6	1974 1974	NA	2,750	*Vinde	99.0	*D 003	×2.000	00.305	071,005	50 306	-95095	40.01	NA.	Puntur Na	NA.	Naphilateur No.	fedurate NA	TI-A	MUN <0.00a	123444	Light-simp of	100-13
,	6-20274R	11/20/54	247	IN.6	198	2)	wt 013	-tor	×0.000	×1000	*0.565	40005	~0.305	en cas	33 (1)	34	24	10.6	25A	NA.	MA	-97,925	582	5.8	1:
	E-70619-16	11036934	NA.	197%	AR	-5	<0.003	·0),03	~6.002	×40,005	~30,005	~0),Qt5	~0,303	-03,005	-00,03.	87	74	和人	52.4	MA	14A	-: () (ide	47	855	18
	P1200-14	17/30/84	3/6	問点	NA	<3	4D 000 c	-500M	05 ME	45 PHS	M1,05	~000ms	40,305	-0.0005	~30.01	SA.	1/2	NA.	NA	10%	NA	40,025	1/2	NA.	- 6
	L-7@91.82	1.730/94	NA.	N.A	356	- Y8	40,005	-50001	40,005	**(1000)	200005	~7.0005	000105	+X0X05	20.01	7.2	- 32	19/6	7.4	PA	NA.	三位675	24	2.4	19
	L-7888-40"	15/30/04	NΛ	74/	37.4	15	≈0 005 ∞6 305	<0.01	=0,005	×0.035	-80,005 -0,005	<0,005 <0,005	<0.005		98,01	- 37/4	24	18/4	5/	NA.	14/	=0.005	27.9	- 257	N
-	RAZIMAN	11/30/94	MM	1964	Sa	14.6)	00 1075	~11/11	~910/15	(-h/Vm3)	×1/1/102	211103	-60,104	12(1)(0.1)	_ 30.00.	54	5.8	1994	74	NA:	MA	46,023	33	S.A.	N
	E-1463Y	120004	MV	SA	35.	22	500,04	-:@iiII	2012005	×6.005	200,005	<0.005	<0) (0)6	70,005	35,01	3.a.	2.74	極有	254	NA.	MA	-00,025	14	120	14
	Tarletak 3	12/01/4	NA	3.8	47	16	*10,::05	<:::01	-03,005	<0.0002	-00,005	-51,005	-00,005	<0,005	23.00		Sec		SA	N.A.	NA.	5U225	35%	3/4	N
	L>146615	14/11/14	NA.	*XA	3/6	16	*/JU05	~8001 ~8.70	970005	e0.0021	<0.0001	<3.1705	~0.003	<0.005	40:01	NA.	191	84	127	1576	制度	~0.705	54	150	N
	E-14-8/201 3-14/5/251	12/01/24	NA NA	24	3.A. 193	23	-30,005 -30,005	40 at at	+00.005	~0.000a <0.0002	+0.005	<0.005 <0.005	-aucos	40005	<0.(0) -80.01:	35	2.5	38	27.4	A'A	BA BA	107,025 -(10,025	7.7	XA	<u>14</u>
	5 (435a)*	120(15)	NA.	50	199	19		=D(01	<30005	0.5 MCs	<3005	=3,765	<0.005	9/11/05	~30.D1	- NA	37	7,47	525	NA WA	110	40.025	32	3.9	T.
	7.12963	12/0/791	3.4		N.e	\$	40,005	<0.01	-400ES	40 005	F-500005	480.005	20,005	-01.505	20.01	SA	2A	4.0	SA.	3.4	198	-00,02°	24	5.5	14
	7- × 2000	12/2012/11	Ķε	13	TAA)	32	40,005	-30 30	-00,005	×0/208	-60,005	~00,005	>0.003	90,005	-00091	- 5/4	16	150	SA	1/2	BIA	=1.70×	N.5	0.4	38
	200 PARC	Datast	777		PM.	.05	<3.10:	=0.30	<0.035	45 105	<0.006	<	- 48 BYS	₹3.0 %	×3.01	20	264	NX.	22	NA	MA	40,025	50	335	t.i
	F. 595	1280731	25	NA.	N/A	- 3	46003	70,81	1110005	<0.005	9.00000	111,005	90.005	-03,005	~00.00	X4	2,4	NA.	34	24	MA	ADJUZ:	74	-174	.69
	bs. 55/10	12705034	17.0	NA	14/4	44	-59,005 -69,005	30.21 30.21	~8,005	203,08	<3.005	~0,005	×30,005	-61,005 -61,005	00001.	324	77/1	7.4	STA.	730	18/	= 0000E	24	3//	18
	E-15@14	122 24	44	NA NA	AN AN	15 ×5	400,00E	63,82	<00005 +00.005	-0.005	<0.005	<0.005 →0.005	<0.605	60,005	<0.00 <0.00	R/L 772	3,41	**************************************	- NA 9A	3/A	制A:	40,023 40,025	35	38	ti.
	T. 159g20 E-100g25	12/CN94 100.784	164	NA.	NS.	18	~ (E.ABS	-316-	~ 0 t/9s	-80,035	<0.005	~£0105	(3.00)	-01,005	<9.00	388	727	350	201	24	AR.	<5.725	24	24	151 163
	P-15/78/10	12/07/9/	NA.	NA.	3.4	- 9	=0.000	30.0	4000m2	<0,005	40005	-40,008	~9,508	<0.005	30.01	NA.	3.4	A.C.	NA.	3.4	MA.	+III.025	3.4	SIA	
	E 15223	22,0009	Aff	34.90	183	-3	-90.005	*0A"	<0.0000	##J.UUS	<0.00005	<0.005	~J.005	470005	~#J.01	202	Vi	1/3	HÁ	7.3	ĐÁ	~0,009	2.9	19."	F-1-10-F
	E-15(\$40)	20102	186	39/	23	- 6	~(F3))(V-	400	$\sim 0.09.5$	43 1975	~6003	~6.00%	20 705	~3,005	59,01	252	- 57	- NA	AE	77	78/4	_<%025	100	395	ti)
	F-152345	2/01/9/	HA	3.4	8,2,	147	=0.365	9JU)	300000	4)11,05	000000	09000	20.00S	<90005	30,01	NA.	39	38	NA.	3/4	13/4	~130025	第5	然在	14
	ancel-insign		NED ARKA		.00	×16	1000	1.000.0	*6,0013	*03017	*600012	~8.0012	2014	-181 C(Z)	A MAGO	DC MICH	eres area		10.1931.09		18CHESTS	77 1000		Second	100, 100-1
	2-10/01	0803/94 0803/94	277	<u>Q</u>	- 3	97A	<0.00 %	<600%3	+0.9013	-20,0013	**************************************	H00,00012	0.014	40,0025	<0.0005 <0.0003	<0.0012	<0,0012 <0,0019	<0.000 s		*0.00002 *10.00012	- 00 1913 - 40 3013	~0.002s <0.002s		+0.0013 -+0.0013	40,000 40,000
	3-5982"	3(8/03/94	1	- 62		33	SEC. 3	c.30 (ks	<10000×	9900001	53,1013	<0.0012	9,0098				<3.0313	-manual	<0.0213 2100.0×	20 Oh13	<0.3013	40 CF20	36.0013	<0.0012	<0.00
	34.70	35/03/94	- 6		-15	350	~0.90013	40'00'5	40,000 s	-500.017	2/k00113	<0.000 to	1000.0	×0.0026	100		<3.0913	-0.0015		<0.0913	40,0013	-03.0026	49,0003	40.0912	(0000)
	≈ 6:1g2"	08/04/94	<00		1.44%	-%/	070613	40 0015	~000%3	-57,0913	40,0013	*0,0012	2,000,000	0.14	30000 A	<0.0314	<15019	-:::A313	400003	40,0015	44 CC13	8.027	40.6012	90.0012	30.00A
	\$40 <u>056</u>	103094			NA.	120	1416 201	- cran	- 30,66%	-: (LMS	<0.000 Mg	- 40 Ms.	of 635	70,005	~##.01	79	354	14	NA.	100	19.6	4h3025	50	535	10.
	P. B. Shorth	11/30/94	3.94		1414	49	×13,0005	4001	<0.005	manus	/10/1/05	/10/1/05	40.005	43,035	28.01	- 3A	38	3.5	- NA	2.4	10,4,	-10,025	- N	2/4	14
	19-11/48/19-16	11,30,54	7.0		NΛ	- 15	<0.000 <0.000 <0.000	~15:01 ~15:01	NUMBER *0.005	<0.000 <0.000 <0.000	<0.005 <0.005	-05,008 -00,008	10,000 10,000	*0,005	-:::01:	8/4	35/	329	74.6	73	10%	=8,025	3.4	Car.	14
	E410(620)-011 T-12025-6	1.730/84	2.8		NA NA	~5 48	40.053	9000	-<0.005	4696	003105	-00,005	KIN083	<0.00a <0.005	<8.01 26.01	NA	39A)	NA NA	NA NA	2.8	NA NA	400,025400,025	364 3.A	332	51. -1%
	E-12hg: 0-15	1,/3004	NY.	-	NA	~5	×16,025	⇒((3))	×3.60%	<0.003	<03.205	-00.80m	÷0.005	<0,005	>0,01	3/	NA	374	NA	12	137	<3.025	500	8.6	18
	E-12/0 S-119	7.7320/4/	16%		NA.		-18.025	2.07 (0)	~31,005	-07:00%	-60,005	-0.355	×6,025	45,005	~3, <u>11</u>	NA.	NA	5A	NA	35%	ĐĄ	410025	34	100	19,
	F 12(62)1-2.	1199,50	MA	MA	1/2	特集	40,000	*0.01	- 4% OUX	-31.3162	-0.005	20,005	80.627	400005	25,01	90	NA.	13	Na	-28	- DA	30,(0.5)	28	28	n
-	-	The same of	- 17		d 8.50	-										(ATE	- 7		1.7		- 6.7	24.7			
Comme	25/4/8/2.19	275300	513 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0,4%	7,550	34	54	ARE	SPA.	70%	XY	34	NA.	A.	X2,	NA	724	N/s	37	15%	, NA	100		
51 W	kennaa7660'		-wantere -≪at		570	NA.	<0.002	×0.00	+ £ 035	~9.000N	~00,000	4500005	8600	*09,020°	1900(08	×0.0002		=0.863	-3035	en med	×10055	S-3006	*0.020	×508s	*3.00
	5500 a 3 at 0							40.0	<0.005		00,608	10,005	65,003	-0.70%	<0.005	<0.0005	-1.000	-40.002	*30005	400,000	700005		40,020	<0.0000 <0.0000	×4500
	Sumple Sula		2.4					*is.c.	~t0.625	40.005	43,003	471.05	ng/882	8.071	10,009		2015	0.007	0,0%[0.011	~00.005	<0,006		A00 (003	×2.bc
	Sam: 165 59(0)		23.7			35		49,0	>0.00%	-30 (00s)	40 fain	100 Earl	3000CS	~0.02C	<0.002		×2009	×070000	~9,095	×9/003	40,005	<30005	*5 020	- 30 OB	- 1 × 13
	San "11: 5584"	10710308	State of		-053	0.29		47,07	40000	<0,003	-6(00)8	<0.003	505(0.3	< 1020	-00 P/55		40.000	<0.002	<33,035	*70 005	40Wa2			12.022	45
	Sample 7(9)1"	372711/00	16.	~(A)				7.Tbf	-01(302)	~U.005	-40.005	40.0m	 42.003 42.003 	10.02V	e01:05		×25,005	×0.003	90 tos	20.063	<0.004		×8.020	30 Offi	×2.10
	Sample K@P		051			10A		40.01 40.01	<0.000 en 200	×0.008	20.005	20,005 21,000	20 003	46 00C	ALTHOUGH OF THE PARTY OF THE PA	-50(003 - 6 per	×\$2.000	40 00S	-00,005	40.022	100,000		<0.020	40 005 -0 40 6	200 P
	Sample Sugar Sample 1078)	(27) (39)	0£1 ∞0 I		450			*0.01	40 005		<0.000 46.000	<0.007 <0.003	90,0 <u>6</u> 2	+05026 =€0926	40,005		100000 100000	<0.002	<0.005 <0.005	*0 003 ≈0 033	<0.005 <0.009		≈0.020 ≈0.020	40.008 40.083	~3.00 ~30.00
	Sacrate 1 Gas			0.0	45C	. 30	200005	485.01	40,365		<0.003	300.605	90.05	<0.020		<0.005	×3.005	×0.002	-93,005	×6 082		~0,005		483042	×20,00
STE	ARCEL - SEDIM		_								27.000					7.532		and a	7,5,5,5		.61.53	10,000	310-15	- Indian	4,2
L	Segintent	02/01/04	ce.7	×10	=200	240	≥3,035	×0.01	40005	-20,005	~c.005].	25,005	4,0005	=1550£	403.00	storts.	53L095	N0.000	~50,00S	*00.003	400009	<0.005	-r0.000)	= K02083	×45.00

1.01%

TABLE 1
HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

Original in Color

				(8015M)		(418.1)	- .								(80	20/8240/826	0B)				_				
									Ethyl	Isopropyl-			Methylene			n-Butyl	sec-Butyl	n-Propyl		p-Isopropyl	sec-Butyl				
Firm	Samples ID	Date	TPH-G	TPH-D	TPH-O	TRPH	Toluene	Xylenes	benzene	benzen e	PCE	TCE	Chluride	Acetone	TCFM	benzene	benzene	benzene	Naphthalene	toluene	benzene	MEK	1,2,3-TCP 1,2,	4-TMB	1,3,5-TMB
EAST PAR	CEL - STOCKPI										T		0.00-1						T						
	ESP-1	01/28/09	< 0.100	<10	<50	NA	<0.005	<0.01	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.020	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	<0.005
	ESP-2	01/28/09	< 0.100	<10	<50	ÑΑ	< 0.005	<0.01	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.020	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.020	<0.005	< 0.005
	Stockpile C	02/11/09	< 0.100	<10	<50	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005
	Stockpile D	02/11/09	527	7,960	8,000	NA	2.31	<0.01	0.884	0.610	<0.005	<0.005	8.27	<0.020	<0.005	3.53	2.25	2.03	4.31	3.73	<0.005	<0.005	<0.020	<0.005	4.51
EAST PAR	CEL - SITE ASS					NIA	<0.005	-0.01	0.005	~0 0 <u>05</u> 1	<u>~0.005</u>]	<0.005	<0.00sl	<0.020	<0.00s	=0.0061	-0.005	~0.00s	-0.00=	-0.005	-0.006	-c0 000	40 00E	-0.00el	*0.005
- {	B-7Ad5	12/07/09	<10	94.9	198 48,300	NA NA	<0.005 1.07	<0.01 <2.0	<0.005 <1.0	<0.005 <1.0	<0.005 <1.0	<1.0	<0.005 <1.0	<0.020 <4.0	<0.00 <u>5</u> <1,0	<0.005	<0.005 <1.0	<0.005 <1.0	<0.005 <1.0	<0.005 <1.0	<0.005 <1.0	<0.020 <4.0	<0.005	<0.005	<0.005
	B-7Ad10	12/07/09	<5,000	16,800	<u>48,300</u> <50	NA NA	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	1.60 <0.005	<1.0 <0.005
	B-7Ad15	12/07/09	<10 <500	<10 3,400	12,300	NA NA	< 0.005	<0.01	<0.005	<0.005	0.043	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	<0.005
	B-7Ad20	12/07/09	<10	<10	<50	NA NA	<0.005	<0.01	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	<0.005
	B-7Ad25	12/07/09	<10	<10	<50	NA NA	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	<0.005
	B-7Ad30 B-7Ad35	12/07/09	<10	<10	<50	NA NA		<0.01	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.020	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	< 0.005	<0.005
	B-7Ad40	12/07/09	<10	<10	<50	NA NA		<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	<0.005
	B-7Ad45	12/07/09	<10	<10	<50	NA	< 0.005	<0.01	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.020	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.005
'	B-7Ad50	12/07/09	<10	<10	<50	NA	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.020	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	B-7Ad55	12/07/09	<10	<10	<50	NA		<0.01	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.020	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005	< 0.005
	B-7Ad60	12/07/09	<10	<10	<50	NA	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.020	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	< 0.005	< 0.005
	B-7Ad65	12/07/09	<10	<10	<50	NA	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005
	B-7Ad70	12/07/09	<10	<10	<50	ŅA	<0.005	<0.01	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.020	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005	< 0.005	<0.005
	B-711(10	12/07/03	-10			,									******	******	0,000	5.005		0.000	0.002	5.025	V.V.	0.000	
EAI	MW-1Ad60	12/07/09	<10	<10	<50	NA	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005
15.11	MW-1Ad65	12/07/09	<10	<10	<50	NA		< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
	MW-1Ad70	12/07/09	<10	<10	<50	ŅΑ	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005
EAI	E-9Ad5	12/07/09	<10	<10	<50	NA	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.020	<0.005	<0.005	< 0.005
2	E-9Ad10	12/07/09	<10	<10	<50	NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
	E-9Ad15	12/07/09	<10	<10	<50	NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
	E-9Ad20	12/07/09	<10	<10	<50	ÑA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
	E-9Ad25	12/07/09	<10	<10	<50	NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005
	E-9Ad30	12/07/09	<10	<10	<50	NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
	E-9Ad35	12/07/09	<10	<10	<50	NA	<0.005	<0.01	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	< 0.005
	E-9Ad40	12/07/09	<10	<10	<50	NA		<0.01	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.020	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
	E-9Ad45	12/07/09	<10	<u><10</u>	<50	NA		<0.01	<0.005	<0.005	< 0.005	<u><0.005</u>	<0.005	< 0.020	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
<u>'</u>	E-9Ad50	12/07/09	<10	<10	<50	NA		< 0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005
	E-9Ad55	12/07/09	<10		<50	NA	<0.005	<0.01	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.020	<0.005	< 0.005	< 0.005
	E-9Ad60	12/07/09	<10		<50	Ν̈́A	<0,005	<0.01	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.020	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.020	< 0.005	<0.005	< 0.005
	E-9Ad65	12/07/09	<10		<50	NA	_	<0,01	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	<0.005	<0.005	< 0.005
	E-9Ad70	12/07/09	<10	<10	<50	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005
		1		1	25.1		-0.005	ا ده هـ	-0.005	-0.005	-0.005	40.005	-0.005	-0.000	.0.00.5	0.005	.0.00.0	.0.005	.0.00			ا معمد	-0.00=		
EAI	Sample 4Ad5	12/07/09	<10			NA.		<0.01	<0.005		<0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	***	*1*	<0.005	*****
I		12/07/09	<10			NA		<0.01	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	Sample 4Ad15	12/07/09	<10			NA NA		<0.01	<0.005	<0.005		<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.005
		12/07/09			<50	NA NA		<0.01	<0.005	<0.005 <0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005	<0.005	<0.005
	Sample 4Ad25				<50 <50	NA NA		<0.01 <0.01	<0.005	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.020 <0.020	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005		<0.020	<0.005	<0.005	<0.005
1		12/07/09	<10			NA NA		<0.01		<0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005 <0.005	<0.005		<0.005		<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
		12/07/09	<10 <10			NA NA		<0.01		<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005	<0.020 <0.020	<0.005 <0.005	< 0.005	<0.005
	Sample 4Ad40 Sample 4Ad45	12/07/09	<10			NA NA		<0.01		<0.005	<0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	
		12/07/09 12/07/09	<10			NA		<0.01	_	1	<0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	< 0.005	
	Sample 4Ad50 Sample 4Ad55	12/07/09	<10	 		NA NA		<0.01	< 0.005		< 0.005	<0.005	< 0.005	< 0.020	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	
	Sample 4Ad55	12/07/09	<10			NA.		<0.01	<0.005	<0.005	<0.005	< 0.005		<0.020	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	Sample 4Ad65	12/07/09	 			NA NA		<0.01		< 0.005	<0.005	<0.005		< 0.020	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
ı	Sample 4Ad63	12/07/09				NA NA		<0.01	_	<0.005		< 0.005		< 0.020	< 0.005	<0.005	<0.005		<0.005	< 0.005			<0.005	<0.005	
	рапріс чисто	12/0//09	-10	-10	-50	1171		-4.41	-0.000	.0.000	0.000	.0,000	.0.000	.0,020	0.000	-5.003	-0.000	-0.005	40.000	30,000	-0.003	-0.020	*0.000	-0.000	40.00

5 of 6

PARLET HISTORICAL (1984 - 2000) SOIL TESTING RESULTS - HYDROCARBOSS 11630 - 11700 Burlov Street, Sanda Fe Springer & A 10070 (concentrations to milligrams per silvators or subj)

Driginal in Coluc

		- 1		(6019M);		(cdhil)									(80	28/8241/826	(R)								
	Samples (I)	Date	TPHAT	TPRAIL	TPHO	TRPH	Tahmar.	Nylanes.	Life!	Isoprong-	PCT	10%	Methylene Chlorate	Acctone	332169	mBiatyl. henemic	sec-fluigi bangunt	r>Pampyl benzyme	Naphillinlene	p-isteropyi tuluene-	nei-Rogi benevite	MEG	3,7,8-16.0	7A-1800 1	J _i S-TMB
ANT PARC	TO REMEDI	02/22/10	SIO	**Bary 2016	<501	NA	NA	No.	- G	MA	NA	NA	NA	SA.	≫Ā.	NA	SA	NA.	NA.	SA.	196	NA.	NA.	NA	308
	ITA INSSAL	102;22/10	<10	<10	-60	Alf	NA.	487	201	NA.	NA.	NA	NA	170	35%	NA.	50	154	NA	54	13/4	WA		DAA.	
1	HA-1676	度/25/10	*10	~10	500	NA	NA	KZ.	24		NA NA	NA.	MA	Sec	SA	NA	34.8	7.9	W	- Max	NA.	NA.	SA	A/C	- 44
100	Faul Figur	12/2010	×10	×10	<50	和本	NA:	2.7	70			NA	NA	334	%A	30	NA NA	3A		5,5	NA	NA.	S/A	NE.	394
	ta-rwarr	73/25/10	-10	×10	-100	NA.	NA.	36	3.6		NA.	- NA	NA.	27	- 86	- NA		- NA		- 178	19/4	Ma	12	746	
	88-45-84 88-45-84	1/2/22/10	<10 <10	<10	351	NA.	NA xivi	7.7 7.7	**3		NA NA	NA.	NA.	8-9 10A	AA AA	NA.	A.K. 838	7.4	NA	146	Ald Ald	NA.		NA.	3W 28
100	SS 45707	(2,73/10		×105	450 530	NA NA	NA.	36		NA AM		NA NA	NA.	- 5A	733	NA.	NA.	305		200	NA.	- NA NA		NA NA	-SA
3	SB-151 <u>0</u> 31 55-578(8.1	1,2,227(6)	×10	×10	27/9	NA.	NA.	776	37.4 37.5		AN NA	NA	NA	- 5A	ISA	NA.	DA	NA NA	NA.	tsA.	194	148		NA.	56
	H-(SVAV) ^(N)	02/08/10	×10	×10	450	NA	<0.023	×400	<0.000 mg/s	<0.015	<3,005	<0,005	×3(00%	×49 (20)	<0.003	-0,605	42,025	40,005	50,005	546,003	-40.00S	-3,020	50 003	G1.035	10 805
	H-93(G)(9 ⁻⁵⁾	03/22/10	-400	8.9	30.7	NA	-:0.035	<0.60	## C0%	73,000	<30035	×0.005	<30.035	-3/020	×000005	·0.005	:8.033	900003	00005	c05,6005	1207.05	88,028	753/4023	120.015	40.005
	9-78%7 W-	02/26/10	× (i)	48.0	127	Ņá	<0,005	<3.00	~05,2208	+93,005	<0,005	50,005	<3.005	-50 020	68,085	40,505	<0.003	-02002	40,005	~0.005	:0,005	<41,020	500003	60,005	±0 (955
	0-509903 FF	03/22/10	-10	3,000	13,600	NA	30.00S	4301	*9505	<0.005	2,010	<0.005	<0.000	<0.020	45.08S	<0.005	48005	-:0x05	<0.005	<0.008	<0.000	<0.026	<00003	20,005	~0.808
1	(X)02 ltl	(2/23/10	-010	03.0	227	NÁ	-90,0%	<3.01	49,065	60,005	(3),(95	41,005	<0.008	6 (00)	20005	+0005	~0.005	<pre>mmes</pre>	≈00005	et 035	~7755	=≤0.0000	-000005	<33.0015	-:0.005
	CEQUA (E)	02/22/10	10(4)	:10	750	85	/00.0003	43.01	40,000	4000 5	<40005	<0.005	×0.008	- 0.028	<6.008	>:0.005	×8.005	<01085	×0,005	>:0.00%	<0.005	<3,000	>0.005	<0.005	< 0.904
3	CW(GP(h)	0.2/22/10	±100	1632	2,300	W	3-05005	<3.01	40/H/6	40,005	<0.005	<0.005	<5.005	+0.020	~00035	10000	40,005	<0.0085	20,005	40.000	<0.003	<3.020	~p.003	≈0.005	~0.001
7	radigis ⁱⁿ	02/02/10	×10	216	<50°	148	<0.008	v0.61	<0000g	-93,60s	<0.035	-00,005	×9,00%	×(0320	<0000	×0.00	-40.003	<0,005	<0,005	×12 030	₹## 205	<0,026	80,003	-20,005	<0.205
1	CHIVALIST M	02/02/00	910	562	2,340	14/4	<0.005	<0.61	<0.368	<0.005	<3.005	<0.005	<0.00h	+0.020	×30,035	-10705	:0.033	30,035	×0.005	:0.000	<0.00s	7/00/20	807003	201,005	rothy.
		DIMINA	743	16,800	45,800	33,000	2.30	3.57	0.884	0.61	0.51	0.27	9.27	0,24	100	3,53	2,25	2.08	1,32	2,73	0.22		NU	1.5	5.51
		331	500	1,930	10,000	18,000	045		6.9	V.E.	0.25	£15	ME	%h	1000	\$T.	NIT	147	380	N5.	217	100	NE	NT.	গ্রা
		SLOGR	177	- 715	NT.	_ NE	320,5	1973	3.7	7,200	0.57	28	-10	\$17000	890	NE.	ME	3H		No.	NE		0.091	263	47
		51/20-1	- 本社	NE.	NE	NE.	4e.0%0	2,600	. 29		2.7	11		810,000	2,400	- 2E	NE.	NF-		N-	8/F	2010, 24	- 0		-200
		CHHSL-R	NT.	7E	NE SVE	NE NE	NS.	37F	79.6) PE	NE	14F	NE NE	32	N=	(年	NE	NE		NS.	NE		NE.	ME	20K
		- CHIERD-D	\T _c	- 1/15	3815	170	料	NT.	NT.	江	107	130	NE.	85	- THT-	₩E	NB	粉色	30世	185	NE	ME	SE	ME	NE

Linky these VCO's detected are listed.

r. - Not detected at laboratory reporting from Historia

sec- Necessived for the phonocal

1073 - Nav deregréd

NA - Not smalth Afreit.

(ii) Sucuple was stag analyzed for JPCBs on ISVDC: In MICBs or SVDVa were decisived

(h) - Sample was also analyzed for SVOC). The SVOCs were deposed

SSL - Life Angeles RW QLB Seri Servennia, Levies - Contention OF VOL-University, Sites (essentin 1995) and Delicebour-Lippedint Sites (Nat 1995).

TEHIC - Ters: Perminum Hyrimes 'Annaus Grad 'Ne

TREAT - Trans Recoverable Perroleum Pyarmenthan:

TXTI D = Tala Partition (Hydrogerinns as Diesel

TVA-C Total Positionar Hydrostrum est bu

STATE A Region 7 - "Seventing Fevel for Obertical Contraction State find Sites" - Residential Land Use (September 2003)

State 1 = FPA Region 9. "Sercoung Level for Chemical Core annuny at Superland Stus" - "Connecteial/Industrial Land Viso (September 2008).

Whatstack = Constant - Communications. Result Servicing Losets in Examination of Communication Properties" - restocated Lador Use planting 2005. CHHSV 2 = Co-CV q. - 20 of form is Human Realth Screening Levels in Evaluation of Contominated Properties** Commercial/industrial Local Use (Farming 2006).

. - Estingued concessivation

0.37 = Concentration detected exceeds SSL. However and conservorses as part of the remodernies of Forest considered by BEA in 2005.

(6.57 = Concentration detected exceeds SSL.

The Produce encir-

PCF Tetrachiomethene

PCFM - Triskdorölleurumernen

STEP = Medityl Hillyr Reserve (Control Ligner)

.. 2.17 Cy = 1.2.74 Trichleropropau.

1,2,6 TMB - 1,2,4-Lincelty/licizene 1, 5,61 kg = 1,3.5 Trimetholicozene

0.146

Original in Color

								Total									14		
Firm	Samples ID	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
WEST P	ARCEL - CLAR	RIFIERS (H	istorical Pai	nt/Steam C															
PSII	HA-2@10'	08/04/94	<4	<4	117	0.8	<0.2	28.7	14.4	28.1	19	< 0.002	< 0.4	< 0.7	<3.5	< 0.3	<10	51.7	58.7
	HA-3@4.5	08/04/94	<4	<4	191	1.1	<0.2	40.8	17.8	31.1	26	0.05	1.9	23.4	<3.5	< 0.3	<10	65.9	121
WEST P	ARCEL - MAIN	TENANCE	SHOP								4								
PSII	B-5@4'	08/03/94	<4	32	119	0.7	<0.2	21.6	12.2	18.5	15	< 0.02	< 0.4	14.8	<3.5	< 0.3	<10	41.4	46.4
WEST P	ARCEL - EOUT	PMENT ST	ORAGE (St	ained Area	1)														
PSII	HA-4@2'	08/04/94	<4	<4	112	0.8	<0.2	24	13.1	17.2	16	< 0.02	< 0.4	14.7	<3.5	< 0.3	<10	46.3	51
WEST P	ARCEL - CONC	CRETE VAL	ULT 3																
EAI	V3d15'	11/23/10	<1	1.29	90.2	< 0.5	< 0.5	13.8	6.48	16.4	12.9	< 0.01	<5.0	8.76	<1.0	<1.0	<1.0	33.2	41.2
	V3d20'	11/23/10	<1	2.56	60.7	< 0.5	< 0.5	9.24	4.80	10.6	1.83	< 0.01	<5.0	4.75	<1.0	<1.0	<1.0	22.1	28.3
	V3d25'	11/23/10	<1	1.56	34.4	< 0.5	< 0.5	5.09	2.33	6.44	1.45	< 0.01	<5.0	2.96	<1.0	<1.0	<1.0	10.7	15.7
	V3d30'	11/23/10	<1	3.28	26.0	<0.5	< 0.5	5.87	2.59	6,45	1.59	< 0.01	<5.0	3.14	<1.0	<1.0	<1.0	13.8	17.2
	V3d35'	11/23/10	<1	1.66	49.2	< 0.5	< 0.5	8.07	3.48	6.82	2.02	< 0.01	<5.0	4.21	<1.0	<1.0		14.1	21.7
	V3d40'	11/23/10	<1	5.77	133	<0.5	< 0.5	20.6	9.95	21.0	3.25	< 0.01	<5.0	10.7	<1.0	<1.0	<1.0	46.7	63.7
	V3d45'	11/23/10	<1	2.97	93.6	< 0.5	< 0.5	18.8	8.50	18.6	2.71	< 0.01	<5.0	8.45	<1.0	<1.0		40.2	55.4
	V3d50'	11/23/10	<1	3.05	75.9	< 0.5	< 0.5		7.00	13.5	2.07	< 0.01	<5.0	6.54	<1.0	<1.0	<1.0	27.9	39.5
	V3d55'	11/23/10	<1	10.1	248	<0.5	< 0.5	27.8	11.7	24.6	5.40	< 0.01	<5.0	18.0	<1.0	<1.0	<1.0	50.5	57.3
	V3d60'	11/23/10	<1	10.9	115	< 0.5	< 0.5		10.8	26.8	5.49	< 0.01	<5.0	17.3	<1.0	<1.0	<1.0	54.7	59.0
	V3d65'	11/23/10	<1	3.22	48.9	< 0.5	<0.5		3.44	7.43	1.43	< 0.01	<5.0	3,66	<1.0	<1.0	<1.0	16.1	23.4
	V3d70'	11/23/10	<1	2.04	50,6	< 0.5	<0.5		2.14	5.51	1.11	< 0.01	<5.0	3.09	<1.0	<1.0	<1.0	11.4	15.8
	V3d75'	11/23/10	<1	3.41	48.1	<0.5	<0.5		2.81	7.54	1.66		<5.0	3.55	<1.0	<1.0		14.1	19.5
EAST PA	ARCEL - STOR																		
PSII	HA-1@2'	08/03/94	<4	<4	111	0.6	<0.2	26.8	12.6	18.1	28	0.02	<0.4	13.1	<3.5	< 0.3	<10	31.1	56.4
	ARCEL - ABAN		ARIFIERS																
PSU	B-6@10'	08/03/94	<4	43	224	0.8	<0.2	36.6	17.4	31,5	26	0.04	< 0.4	24.5	<3.5	0.4	<10	62.1	66.7
	B-7@10'	08/04/94	<4	29	193	0.7	<0.2		15.4	39.1	22		< 0.4	22.9	<3.5	< 0.3	<10	47.5	87.6
	B-7@15	08/04/94	<4	<4	54.9	0.4	<0.2		5.3	12.1	<3		<0.4	7	<3.5	<0.3	<10	18.8	27.2
	B-7@25'	08/04/94	<4	<4	43.2	0.2			4.4	15	6		<0.4	6	<3.5	<0.3	<10	16.7	27
	B-7@35'	08/04/94	<4	50	188	0.9			19.4	44.4	27	0.09	<0.4	25,5	<3.5	0.3	<10	67.9	83,2
EAST PA	ARCEL - HISTO		AINED ARI																
PSII	B-1@2'	08/03/94	<4	55	259	1.1	<0.2	45	21.9	50.4	31	0.02	2.4	32.2	<3.5	< 0.3	<10	79.8	78.2
	B-2@2'	08/03/94	<4	<4	136				12.4	21.6	12		<0.4	<0.7	<3.5	<0.3	<10	42.5	53.1
	B-3@2'	08/03/94	<4	45	127	1.1	<0.2		19.1	30.4	30		2.1	25.8	<3.5	<0.3		75.1	74.9
	B-4@2'	08/03/94	<4	19	111	0.6	<0.2		7	17.5	14		1.5	10.4	<3.5	<0.3			40
	B-8@2'	08/04/94	<4	<4	148			71.1	46.2	113	47		36.8	100	<3.5	<0.3			85.3
		100,000			- 1.0														
EAI	SS-1@3"	12/23/96	NA.	<5	NA	NA.	NA	NA	NA	NA	NA	l NA	NA	NA	NA	NA	NA.	NA	NA
	SS-2@3"	12/23/96	<6		77.3		1.9		4.7	13.5	<6		<2.5	6	_		<8		27
	SS-3@3"	12/23/96	NA	<5	NA			NA NA	NA	NA.	NA	*	NA	NA	NA	NA		NA	NA
	SS-5@1'-2'	12/23/96	NA	<5	NA	NA			NA	NA	NA		NA	NA	NA	NA		NA	NA
BEA RE	MEDIATION A				1.77	1471	147	, ,,,,		1.1.1	1,12,6	, ,,,,,	1.70	1111		4.571	1.71		
BEA	B-7@5'	08/16/06	<2	5.8	200	<2	<2	62	17	17	7.6	< 0.05	<2	29	<0.5	<2	<2	105	80
DUIT	B-7West@5	08/16/06	<2		170	<2			14		6.4		<2	24	<0.5	<2			70
	B-7East@5	08/16/06	<2		163	<2			11	17	6.1		<2	22		<2			61
	E-9West@5'	08/17/06	<2		159				22	47	46		3.3	52		<2			101
	E-9 Center@5		<2	3.9	118					16	6.3		<2	17	<0.5	<2			54
	E-9East@5	08/17/06	<2		115				14		16		13	97	<0.5	<2			69
	E-7East(w)	00/17/00	-4	3.0	113	~	~~	20	14	3/	10	~0.03	13	7/:	~0,5	~2	~~	04	07

GAT.		127 2411020000 1010 271 (0724 15	- 1	- 392 185	- 175	-10/8 -40/3	40.5	26	(C	- 3	3)	2001	4770	30	40	-01% -01%	석(6	20	-
	'Sampte 41	015 21672070	31	154	100	-1600	40.2		5	35	- 0	AU(I)		2	-910	-510	<0.00	30	
_	≦amgle ថ្ងៃ	as supreme	31	-0.87	164	-107	₹0.5j	71	7'	16	31	-0)0)1.	- 470 470	188	-51/0	<1 %	=1.0		
-		MANISTIM	NII	55	259	5.0	1.4	51.1	36.7	113	47	30199	36.8	100			4i	105	19
100		PILEBAUILAN	200	-	1000		-	-	0		-0-					Circle Control	- Val		
	Extru:	1933010	4.17	- 25() B	12%	10/1/1	375	4/19	18.5	5	44	<0)/1)/\displays	258	277	0.00	01 lh	(4)	344	29
	131 45.	17/13/13	40.1	-933	935	48.51	40.3	-208	4.1	453	الملتدان	7 (13)	35(0)	3.	-4971	(3),T	14.2	-01C	65
		MAXIMUM	6.0	ND	134	780	5.35	368	591	433	SLAMO	0.135	76	318	- 1	ND	870	4.5	83
		681 ₂	N.T	ME	NE	NE	NB	NE	NE.	NE	N=-	H.F.	NE.	NE.	NET	- Qq	N.F.	- NG	- 70
	==	551- 5 0048	NB EII	ME 0.39	NE 15(000)	NE)	N6	NE 150,000	NE TE	NE -		15E	3390	NE 1300	NE 7	999 960	NF.,	NE (36)	23,72
=											App. 380			-	-				_
		S 0048	30		15/000	193	70	120,000	322	5,100			3390	1,500	590	(352)	- SI	1390	_

WOTES,

^{##} OTES,

So Across mile of the proporting from total

SIA = No. analyzed for this promited

NP = No. analyzed for this promited

NP = No. analyzed for this promited

NP = No. analyzed for this promited for the promited for the

CMISCAL - Cal-RDA - Co. forms "finance with Plants - wish in Fishing and Properties" - Residence Cord (Sectionary 2005)

(CHASILATIC CAL-RDA - Co. forms along Health Exercises Research Evolution of Communities Properties. Commercial National Confederation of Communities Properties.

TABLE 3
SUMMARY OF GROUND WATER ELEVATION AND TESTING RESULTS - HYDROCARBONS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in micrograms per liter - ug/L)

		Well Casing Elevation (feet above	Depth to Ground Water	Ground Water Elevation (feet above							Carbon Tetra-								
Well	Date	sea level)		sea level)	трн-с	TPH-D	трн-о	Toluene	Xylenes	Chloroform	chloride	cis-1,2-DCE	trans-1,2-DCE	1,1,1-TCA	1,1-DCA	1,2-DCA	1,1-DCE	PCE	TCE
MW-1	10/05/95	152.83	35.83	117.00	NA	NA	NA	<1	<2				<[1.4	<]	<1	2.2	158	7.4
	01/13/97		38.33	114.50	NA	NA	NΑ	1.9	2.7						<0.5	0.5		93	11.4
	02/19/09			RY	NS	NS	NS	NS	NS		NS				NS	NS		NS	NS
	07/14/09	155.19*		RY	NS	NS	NS	NS	NS		NS				NS	NS		NS	NS
	10/20/09			RY	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
			On Decem	ber 7, 2009 v	well MW-1 was de	eepened and is <u>no</u>	ow identified as	well MW-1D											
MW-ID	01/04/10	154.93*	74.72	80.21	<50	<500	NA	<1	<2	1.74	1.15	<1	<1	<1	<1	<1	<1	6.07	3.86
	04/26/10		68.29	86.64	<50	<500	NA	<1	<2		8.68				<1	<1	<1.	16.7	7.92
	07/23/10		67.20	87.73	<50	<500	NA	<1	<2		10.5		<1		<1	<1	<1	25.5	7.98
	10/14/10		70.11	84.82	<50	<500	NA	<1	<2		8.29				<1	<1	<1	6.14	8.21
	01/12/11		68.12	86.81	<50	<500	NA	<1	<2		8.40				<1	<1	<1	8.78	9.36
	04/08/11		60.32	94.61	<50	<500	NA	<1	<2		9.30				<1	<1		10.8	7.42
	09/20/11	152.36*	50.69	101.67	<50	<500	NA	<1	<2		4.99				<1	<1		4.66	2.19
	12/13/11		52.73	99.63	<50	<500	NA	<1	<2		1.51				<1	<1		6.59	2.54
	03/07/12	_	52.23	100.13	<50	<500	NA	<1	<2		1.58				<1	<1		5.84	1.77
	06/13/12		52,59	99.77	<50	<500	NA	<1	<2	1.98	<1	</td <td><1</td> <td><1</td> <td><1</td> <td>_<1</td> <td><1</td> <td>2.98</td> <td>1.51</td>	<1	<1	<1	_<1	<1	2.98	1.51
MW-2	01/13/97	149.66	32.14	117.52	NA	NA	NA	<0.5	<1.0	1.5	<0.5	<0.5	<0.5	7.9	1.3	<0.5	33.2	296	14.5
	02/19/09		39.70	109.96	<50	<500	<3,000	<1	<2	<1	<1	<1	<1	<1	<1	<1	<1	7.19	<1
	07/14/09	152.01*	41.27	110.74	<50	<500	NA	<1	<2	<1	<1				<1	_<1		8.92	_<1
	10/20/09			RY	NS	NS	NS	NS	NS		NS				NS	NS		NS	NS
	01/04/10			RY	NS	NS	NS	NS	NS		NS				NS	NS		NS	NS
	04/26/10			RÝ	NS	NS	NS	NS	NS		NS				NS	NS		NS	NS
	07/23/10	_		RY	NS	NS	NS	NS	NS		NS				NS	NS		NS	NS
	10/14/10			RY	NS	NS	NS	NS	NS		NS				NS	NS NS		NS	NS
	01/12/11			RY	NS	NS	NS	NS	NS.	NS	NS				NS	NS		NS	NS
	04/08/11	152.01*	39.17	RY 112.84	NS <50	NS <500	NS NA	NS	NS	NS	NS	_			NS	NS		NS 6.54	NS <1
	12/13/11	132.01*	38.45	113.56	<50	<500	NA NA	<1 <1	<2 <2	<1 <1	<1				<1 <1	<1 <1	<1	9.37	<1
	03/07/12		38.24	113.77	<50	<500	NA NA	<1	<2	<1	<1				<1	<1	<1	9.31	<1
	06/13/12		38.12	113.89	<50	<500	NA NA	<1	<2		<1				<1	<1		6.15	<1
	00/10/12		20112	115107	50	200			-										
MW-3	07/14/09	155.22*	68.67	86.55	<50	<500	NA	<1	<2	36.1	17.0	<1	<1	<1	<1	<1	<1	2.54	4.16
	10/20/09		D)	RY	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	NS
	01/04/10		D	RY	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	04/26/10		68.49	86.73	NS	NS	NS	<1	<2	9.32	<1	2.69	13.0	<1	<1	<1	<1	130(1)	60.5
	07/23/10		67.37	87.85	<50	< 500	NA	<1	<2	8.34	<1	<1	<1	<1	<1	<1		36.7	6.64
	10/14/10			RY	NS	NS	NS	NS	NS	NS	NS				NS	NS		NS	NS
	01/12/11			RY	NS	NS	NS	NS	NS	NS	NS				NS	NS		NS	NS
	04/08/11		60.46	94.76	<50	<500	ŇΑ	<1	<2	5.56	3.56				<1	<1	<1	5.85	5,31
	09/20/11	152.32*	50.51	101.81	<50	<500	NA	<1	<2	4.73	6.67				<1	<.	<1	9.61	2.81
	12/13/11		52.55	99.77	<50	<500	NA	<1	<2		2,43			<1	<1	<1		13.9	3.51
	03/07/12		52.05	100.27	<50	<500	NA	<1	<2		2.96			-	<1	<1		3.43	21.7
	06/13/12		52.41	99.91	<50	<500	NA	<1	<2	<1	<1	<	<1	<1	<1	<1	<]	3.17	2.09

XL:1576:1576-GWDATASUM-HYDROCARBONS 2012Q2

TABLE 5 SUMMARY OF GROUND WATER ELEVATION AND TESTING RESULTS - HYDROCARBONS 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

(emisentos pas en mierograns conflici - 49/1/1

Well	Unite	Casing Devotion of the contract of the contrac	Cround Water	Ground Water Elevation (feet above sea revel)	THEG	160-0	(1914)	Frilinene	Kyleines	Chierotorm	Carbon Petra- chloride	iss-1,2-b)(\(\frac{1}{2}\)	trans-1,2-DCL	GLIFFCA	13-DCA	1.5-DCA	1-I-DCE	PCE	TCD-
MW-4	27/14/06	155.077	70 KY	85.62	-50	-1500	NA.	81	~ ~	9.11	1134	157	1,22	ব	6(1)	< (19.4	6.05
1100	15.2000		72.52	80.35	450	4500	NA	*2	-5	136	7.93	·4I	1.01	ব	2)	-4(47	16.4	6.85
	201004712		76.51	78 56	250		144	821	-55	11.5	19,5	21	i≥i	-57	51	-41	41	20.4	V.95
	04/26/10:		16.83	9572	450	=500	390	(5)	47.	9.62	6.92	neg.	ा ।		41	. 41	*il	11.3	3,77
	57(25)(6)		68.65	56.42	450	425(0)	260	- 2	72	5,CR	7.44	42)	- W.	4	41	<1	<1	12.9	3,12
	10019000	1	71.71	88.66	×350	-4500	385	<	52	3,29	2.87	44	~!	-⊲ĭ	-0.	_ </td <td>41</td> <td>11.00</td> <td>2.75</td>	41	11.00	2.75
1	03/42/11		68.74	\$5.83	~\2£	-200	NA.	43	~22	2,29	1.8%	731	<1.	<	-61	_<	41	3/90	5.80
	04/08/11		61.31	93.26	<\$\$	~500	AK	471	-42	<1.	<	*4	<1	<1	÷1,	< [97.	2,93	0.00
	04/08/11 53/20/11	154,00%	33,38	109,73	-51	~500	SVA	×I	< 4	41	<1	>4	<1.	<()	(2)	-61	384	5,43	0.00
	12/13/11		38.50	98 52	~60	<500	NA.	×1.	4	<1°	<1		4	-4(-:)	951	id)	102	1441
	00007/10		ES. 34	1997	950	<\$r(i)	140	×4	- 43	~	<1		17	-1	191	961	*5	734	1.03
	04/15/16		23.41	98.20	-7E0	~:\$nb	NA.	×1	12	-71	1	901	12	-70	141	<	~1	6.25	1.5
		Master	um Maynam	iman (Sevel)	84)	319	N5.	180	1,250	NIC	0.6	80	, Mi	-200	4	-32	36,	3.	- 5

⁽²⁾ Young polarita organization principles of small sense from the interval of Ferning IV 2000 sensing and in ELAF, TRAIN, TRAIN, TRAIN of Ferning IV 2000 sensing and in ELAF, TRAIN, TRAIN of Ferning IV 2000 sensing and in ELAF, TRAIN, TRAIN of Ferning IV 2000 sensing and in ELAF, TRAIN of Ferning IV 2000 sensing and the Sensing IV 300 sensing IV 30

1 GWTBS GVENET OF MYDROD CONTROLOGO

TABLE 4
SUMMARY OF GROUND WATER TESTING RESULTS - METALS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per liter - mg/L)

	1 1						Total	Hexavalent			7			1					
Well	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-I	10/05/95	<0.1	<0.1	0.38	<0.01	<0.02	0.06	NA	< 0.03	<0.05	<0.12	<0.005	< 0.05	<0.04	<0.1	<0.02	< 0.16	0.07	0.09
	01/13/97	<0.1	<0.1	0.52	<0.01	<0.02	0.08	NA	<0.03	0.07	<0.12	<0.005	<0.05	<0.04	<0.1	<0.02	<0.16	0.13	0.15
	02/19/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	07/14/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/20/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	04/26/10		On Decem	ber 7, 200	9 well MW-1	was abando	ned and repl	aced by well	MW-1D										
MW-1D	01/04/10	NA	NA	NA		NA	<0.01	0.0037	NA	NA	NA	NA	NA NA	NA	_NA	NA	<u>N</u> A	NA NA	NA
	04/26/10	NA	NA	NA		NA	<0.01	0.0043	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
	07/23/10	NA	NA	NA	NA	NA	<0.01	0.0002	NA	NA	N <u>A</u>	NA_	NA NA	NA	NA	NA	NA	NA	NA
	10/14/10	<u>N</u> A	NA NA	NA		NA.	0.022	0.0056	NA	NA	NA	NA	NA	NA	NA	NA.	ŅA	NA	NA
	01/12/11	NA	_ NA	NA	NA	NA.	0.021	0.0068	NA	NA	NA	NA_	NA	NA.	NA	NA	NA	NA	NA
	04/08/11	NA	NA	NA		NA	<0.01	0.0079	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA
	09/20/11	NA	NA	NA	NA	NA	<0.01	0.0024	NA	NA	NA	NA	NA NA	NA	_NA	NA	NA	NA	NA
	12/13/11	NA	NA	NA	NA.	NA		0.0032	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
	03/07/12	NA	NA	NA		NA	<0.01	0.0044	_NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	06/13/12	NA	NA NA	NA	NA NA	NA	<0.01	0.0060	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	<u>N</u> A
MW-2	01/13/97	<0.1	<0.1	0.44	<0.01	<0.02	0.09	NA	0.04	0.08	<0.12	< 0.0005	<0.05	0.05	<0.1	<0.02	<0.16	0.14	0.19
141 44 -2	02/19/09	NA	NA NA	NA	NA.	NA	<0.01	0.0039	NA.	NA.	NA.	NA	NA NA	NA.	NA NA	NA	NA.	NA NA	NA
	07/14/09	NA NA	NA	NA NA		NA	0.061	0.0033	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
	10/20/09	NS	NS	NS		NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01/04/10	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	04/26/10	NS	NS	NS		NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	07/23/10	NS	NS	NS		NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/14/10	NS	NS	NS		NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01/12/11	NS	NS	NS		NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	04/08/11	NS	NS	NS		NS	NS	NS	NS	NS	NS	NS	NS	NS.	NS	NS	NS	NS	NS
	09/20/11	NA NA	NA	NA	NA	NA	<0.01	0.0065	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/13/11	NA.	NA	NA	NA	NA	<0.01	0.0065	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
	03/07/12	NA	NA	NA	NA	NA	0.013	0.0055	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	06/13/12	NA	NA	NA		NA		0.0057	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3	07/14/09	NA	NA	NA		NA.		< 0.0002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/20/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01/04/10	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	04/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	07/23/10	_NA	NA	NA	NA.	NA	<0.01	0.0087	NA	NA	ÑΑ	_ NA	NA	NA	_ NA	NA	NA	NA	_NA
	10/14/10	NS	NS	NS	NS	NS	NS	NS	NS	_ NS	NS	NS	NS	NŞ	NS	NS	NS	NS	NS
	01/12/11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	04/08/11	_NA	NA	NA	NA	NA		0.0057	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/20/11	NA	NA	NA	NA.	NA		0.0056	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	ŅA
	12/13/11	NA	NA	NA	NA	NA		0.0064	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
	03/07/12	NA	NA.	NA	N <u>A</u>	NA	0.017	0.0072	NA	NA	NA	NA	NA	NA	NA	NA	_NA	NA	NA
	06/13/12	NA NA	NA	NA	NA	NA.	0.019	0.0118	NA	NA	NA	NA.	NAI	NA	- NA	NA	NA	NA	NA

XL:1576:GWDATASUM-METALS

TABLE 4
SUMMARY OF GROUND WATER TESTING RESULTS - METALS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per liter - mg/L)

							Total	Hexavalent	_							_			
Well	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-4	07/14/09	_NA	_ NA	NA	NA	_ NA	<0.01	0.00443	NA	NA	NA	<u>N</u> A	NA	<u>N</u> A	_ NA	NA	NA	NA	NA
	10/20/09	NA	NA	NA	NA NA	NA NA	< 0.01	0.0040	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	_ NA
1	01/04/10	NA	NA	NA	NA	NA	< 0.01	0.0036	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	04/26/10	NA	NA	NA	NA	NA	<0.01	0.0034	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	NA
	07/23/10	NA	_ NA	NA	NA.	_ NA	<0.01	0.0057	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	10/14/10	_NA	NA	NA	NA	_ NA	0.021	0.0051	_ NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
	01/12/11	NA	NA	NA	NA	NA	0.013	0.0052	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
Į.	04/08/11	NA	NA	NA	NA	NA	<0.01	<0.0002	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA.	NA
1	09/20/11	NA	NA	NA NA	NA	NA	<0.01	0.0051	NA	NA	NA	NA	NA	NA	NA	NA	NA	_ NA	_ NA
	12/13/11	NA	NA	NA	NA	NA	<0.01	0.0040	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	03/07/12	NA	NA	NA	NA	_ NA	0.013	0.0040	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	06/13/12	NA	NA	NA	NA	NA	0.014	0.0047	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

2 of 2

XL:1576:GWDATASUM-METALS

Ground water samples collected on January 13, 1997 were also analyzed on a filtered basis. No metals were detected in the filtered ground water samples <= Not detected at laboratory reporting limit listed
NA = Not analyzed for this chemical
NS = Not sampled - well dry

TABLE 5 SOIL LESTING RESULTS - BEA REMEDIATION AT GUST 1006 11030 - 11700 Burde Street Saute Fe Springs, CA 90670 (concentrations in milligrans per kilogram - milligrans per kilogram - milligrans

		-	(801531)		1830	(80)	-	_			1601078	27476A1				
C	Viste	TPIO-CO.	mar.is	201(4)	Toluene	Aylenes	Q	Bariom	Tatel Chromium	Coball	Propose (Lead	Molebaeron	Nickel	None wife	Line
Sample ID B-7665'	150 19/46	93.3	THE	350	<0.001	493.084	Arşenic 5.8	930 a	Caronalum G2	Copan	Copper 17	7.6	and the second second second second	Section 500	Yengdrum 116	80
D=7/65101	087 6786	20,2	70	- 20	<0.003	*0,004	N.E	N.S.	2//	200	186	112		NA		54
15-764.12	11287-9706	200 B	3	- 30	< 0.000	90,004	NA.	THA.	74	83	7.3	NA.		74/	1.72	74
B-26218	03/16/96	-0.2 -0.5	3	- 50	<00,002	+00,034	NA.	N.A.	54	XV	101	No		NA		
D-10010	(american)	2012	41	- 28	- sylven.	201400	1100	7.00					767			
B-79768(@5)	Cey (6/06	30,3	<5	480	-0)(0)/	≈0,004	4.7	170	- 23	13	Life.	6.4	<	284	86	20
B-7 Westyle10	18/16/36	93.5	45	<58	< 0.007	©T004	NA.	NA.	***	394	MA	N/A	MA.	79/	42	73
E-7Woshāll5	487 6786	-100.5	<5	< 40	<0.002	>0,034	NA.	N.	NA.	NA.	204	- No	TNP,	NA	35%	101
B-7Westill&	CN/Wat	630.5	<5	<56	<0.002	≪n ng4	NA.	N/A	- 28V	**A	84	- NA	200	NA.	14	- 27
B-7Dast@h!	[100/a1/00/]	<0.5	≥ 45	<501	<0.002	<0.004	5.8	163	46	= IVI	100	8.1	(Z)	22	81	51
B-TEast 200	08/16/06	<0.5	<5,	-50	<0.002	=0.004	NA	N.A.	56	3.0	182	- NA		NA		3.4
D-7East@13*	1/8/Te/5/A	₹1.3	-:5	<s 1<="" td=""><td>-0.002</td><td>57,004</td><td>NA.</td><td>94</td><td>NA.</td><td>NA</td><td>(3.4)</td><td>194</td><td></td><td>NA.</td><td></td><td>Ne</td></s>	-0.002	57,004	NA.	94	NA.	NA	(3.4)	194		NA.		Ne
D-7ffest (20)	100/16/06	ell.E	15	150	*0.002	<0.084	N-A		NA.	3.A	AZ	312	8.5	MA		36.8
	1						- 74-7		-			2,000	0.00			- 20
had Wester	08/17/06	4/15	0.45	11362	+60.032	·/J,984	- 3		43	.52	0176	46		32	87	100
D-WVESCALT	(361.309)	-5/1/3)	3.2	-550	40,002	<0.004	NA.	NA	NA	3.4	55	48	NA.	NA.	- 52	3.2 7.3
bwWbsrgd5	08/1706	7/1.5	<5	-50	<0.002	< 0.004	NA	10A	ŅΑ	36 A	5.5	17.4		N/A	S.A.	
D-University 20	08/17/06	-30,5	18.00 17.00	<30	-50,002	70,004	NA NA	Na	NA.	24	NA.	X	150	Na	NA	2004
5-9Cantembr	Tosn7/66 I	<0,5	<5	<50	<0.002	<0.004	3.9	18	78	2	18	50.5	· 0	19	37	94
B-9/Contents (0)	08/17/096	×0.5		< 50	0.0046	0.0056	15.4		785	39/0	88	308	WA	MA	1.62	1/1
b-9temporale	08/17/09	<0.5		<50	<00.002	< 0.004	NA			NA	5.4	NA	No.	Na	NA.	3.70
5-9Commig20	B-10-4-1005 + 1	<0.5		<50	-40 mm2		N/A	N/A	194	197	NA.	378	2.0	NΛ	INΛ	- 27
E-STEASING!	08/17/66	~01.5	*5	<50	-81.092	<0.001	XA.	- NA	NA!	86	3.8	8.0	NA)	NA.	3,6	88
E-9Fatario V	08/17/06	-465		101	~M.002	-II 019	3.6			1/1	102	118	1.3	11/2		\$4 59 38 \$4
E-95astriv10	08/17/08	< 1075		456	-69,002	=0.00%	2xA			MA	2.4	380		NA		38
6-9Passio151	OW/13/05	-41.5		<50	-00.002	<0.00%	NA		NA	JAA	8A	SA		19.4		84
3. AFryglia 217	08/17/05	×41.5		450		<0.000	18/A	NA.	NA:	NA	5.8	84		NA.		1811

TABLE 5

SOIL TESTING RESULTS - BEA REMEDIATION AUGUST 2006

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

(concentrations in milligrams per kilogram - mg/kg)

			(8015M)		(826	60B)					(6010)	B/7471A)				
Sample ID	Date	ТРН-G	TPH-D	трн-о	Toluene	Xylenes	Arsenic	Barium	Total Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Vanadium	Zinc
	MAXIMUM	ND	146	183	0.0046	0.0056	5.8	200	62	22	47	46	13	97	105	101
_	SSL	500	1,000	10,000	0.45	5.25	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	SLCC-R	NE	NE	NE	5,000	600	0.39	15,000	120,000	23	3,100	400	390	1,600	390	23,000
	SLCC-I	NE	NE	NE	46,000	2,600	1.6	190,000	150,000	300	41,000	800	5,100	20,000	5,200	310,000
	CHHSL-R	NE	NE	NE	NE	NE	0.07	5,200	100,000	660	3,000	150	380	1,600	530	23,000
	CHHSL-I	NE	_ NE	NE	NE	NE	0.24	63,000	100,000	3,200	38,000	3,500	4,800	16,000	6,700	100,000

Only those VOCs (including fuel oxygenates) and Title 22 Metals detected are listed

<= Not detected at laboratory reporting limit listed

NA = Not analyzed for this chemical

ND = Not detected. Detection limits ranged from 0.005 mg/kg to 0.05 mg/kg

NE = Not established

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-O = Total Petroleum Hydrocarbons as Oil

SSL = Los Angeles RWQCB Soil Screening Levels - Guidance for VOC-Impacted Site (March 1996) and Petroleum-Impacted Sites (May 1996)

SLCC-R = EPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Residential Land Use (September 2008)
SLCC-I = EPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Commercial/Industrial Land Use (September 2008)

CHHSL-R = Cal-EPA - "California Human Health Screeing Levels in Evaluation of Contaminated Properties" - Residential Land Use (January 2005)

CHHSL-I = Cal-EPA - "California Human Health Screeing Levels in Evaluation of Contaminated Properties" - Commercial/Industrial Land Use (January 2005)

5.8 = Concentration detected exceeds SLCC-R, SLCC-I, CHHSL-R and CHHSL-1 standards

TABLE 6
FOR THE THOUGHTS - CATS ASSOCIATED BRITS BELLOVAL TERMINARY SIZE
FROM CITE UNITS SEEL SHOW IT SHOWED LANGUAGE
FROM CITE UNITS SEEL SHOW THE BRIDGE SHOWS
FROM CHEST COLOR SEEL SHOW THE BRIDGE
FROM CHEST COLOR SEEL SHOW THE BRIDE SEEL SHOW THE BRIDGE
FROM CHEST COLOR SEEL SHOW THE BRIDGE
FRO

(Gapunish ass)

1				LEWIS MY						_	798	m						(4.99:05)	(5083)						gyelor	ITH-DUAL:					
ESCAVATOR	00%	Substitute OE) We.	T395-G	1694	TEELO	Accien_	Was constituted	Jenerali Jenerali	Titluenc	SATE (23/TAIN			tenance	nelt/anyl l/autoria	Tinglidation	leturice	Para-Provincesi Shilala &	AD PCBL	Arlein I	Berium C	idmini) F	Trial	Cricall	Lu _s gar	Laid	Attoury	M6:ytdl/Jul	5663) 5	24000	80%
Sample NOV	1.07.1109	3.	37	1,0] 2,10	-200	6000 60000	(0/0¢1) <0.002	20.063	(2.50) \$3,565	40,000	309	-50ath -5005	07054 30.004	000004 000005	4.49	10000	-07004 -40'001	40.00		235	(b)	-3	34.b	1,78	263	-151 645	10050 10050	4542	9.00	902	100 A 100 A
Sugar SQL	10/1100	2	131	~910	3/103	1000	~40,003	-10,003	S4,500	<23,000	*CQ00	80000	9.677	903	90,927	1000	1100	200		184	-99.2	455	30	4.42	15.5	≥,46	<00) <00)	⇒50	[23]	23.5	08.3
amp & She	189 THE 021 000	18	≪21 ≪31	-10	497	40.02	-10.003	101074	45,005	-0 DW	-0.00	*71005	700% 300%	40003 40003	-0005 -0005	40 022	10.075	-100 Wast		2970	172	-0.0 <0.0	- 320	9.77	(8.7)	1940 455 De	0107	36	759	461	20.2
	622 1000	1707	W-1	8/10	-350	-16005	-10.005	70000Y	-32-106	4/0 E0V	Woods	5300	00.00%	70/0-20	20.07%	20,003	(0.038)	2009		403	160	2011	200	1 20	124	340		36	132	62.4	42.3
alta biograms	107 106	16-	97.1	110	646	70077	-mine	- (1/1Ga	6,603	~ July	20,705	12(2012)	97.6	80.00%	arem	(1) 054	-11/1/12	-1(2)		ats	145	-34	28.6	2,64	VEL	X 15	241	5).5	752	30.7	59.6
Image 9334	02:107	1.65	*5.1 *2.6	610	650	- 0.0 (20 - 20 (00)	<0.002 <0.0028	30.095	<0,005 <0.005	< 300	95,00	+3,005	<0.00% -8000%	30.000 50.000	20 075 40 000	+0.00¢		40,9 40.9		30.3	745 777	< <u>0.55</u>	25,1	2,72	26.1	431	<201 <201	35 F		34.7	272
\$1100 to 29	terestate.	DANDHOAT AND	67.1	2.00	7,005 T,005	6.02	-9005	120002	£ 705 <0.005	ATCHUT 40,095	707.51	19201	0.027	10.073	30.003	0.021	0.001	×/*3	33	903	100	49.1	E2:0	0.72	14.1	7,05		-9%	22.2	79.X	8n 57.5
SEDIMENT		STACHLICHAL	1231	2/5401	1,11152	15.02-1	40.045	-dimini-	V.DI3	Secreta	500.004	~181912	HALL C	11.11.2	118067	10.00-11	0.80 1	0108	1/4	2000	116,25	*1051	201	001	- 24	2,23	nasq.	-	4,600	_ 24-74	81-7
Seamen	1 02-1 (are	HAXIIVI N	34	*(b)	- 30	*4002" *10021	-0.024 -0.045		<,005	<2000 <0.000	47,703 37,703	*0.005	-00 055 -00 065	10.055		-0.005	10.000	~1.75 ~11.64	164	95,250 95,200	192	3.00	125	93	95.1 06.1	11.5	6.5459 6.6450	- 3c	75.1 25.3	23.0	393
SHUGKAPER						14141	-10,000			7 641-1-	Contract Con	-141-1-	-many-	- Tentage	- ipassa	- delinit	-10097-1	- 142	1 100			-1007	1001	* 70-7		211-2	Taranaga .		2.10	24.61	
583.1	01/28/05		×0.055	2/10	4	× 0.02	~002	~0.003	<0.505	₹3.505	450005	1,0,005	<0.072	-:0.025		<0.00%	40.075	-/303		4.50	193	~泡	276	3.37	58.1	339	42,01	1355	212	198	1/2 / F(0/2
Stradelike I	101/28/00		*00 (02)	2400	794	7/80X	<0.0005	40.002	-41.2008 - 5400	<5,303°	~0.000	70005 70005	<0.003 0.005	<0.003 00.005	-00 003 00 004	=0.003 (0/002	-100005 000005	- C 24	40.65	1,36	12	70 al	19.1	7.50	260 Vad		10045X	<0.0 50.0		37.7 37.9	1000
Stockath I	02/51/00		327	7 350	1,000		0.834	9 6,3	235	27.0	4.21	8.27	3.53	2.75		431	3.77	17.	0.50	-03	142	41.5	224	9/51	271	-41.5	9:67	13%	127	27.1	30
		STANDAM IN	50%	7,910	2.00	- 3	11.844	- Traile	1.31	213	5.51	8.27	चानक	7,25	2/10	Skir	3075			2,17	284	4574,	72	Pet	1/27	-0.00	0.167	19,2	257	73.K	72 (3
1		580	2001	1 0001	- (2,202	NE	cal	821	0.43	SIE	WEI	225	571	- KE	55	82.0	821	10	SEL	300	1/F	875	75	27	FIF	83	swl	- DE	rist I	20.7	200
		w1X		- NE	MI	÷1,14150	57	2.782	5,04	80	201	580	47.	NO.	33	1,0	2.1	100	01.17	0.14	-,08	75	1200000	12×	1/102	708		190	1.60	39.1	17-076
		80004	SE	J.E	NE	600,000	29	14,000	65,000	100	200	2/107	- 52	1	32	25	100	, 129		1.6	100,006	8:0	150,000	1356	81,000	850	310	7,100	200025	3,800	mujac
_				13	NE.	NE	- 7/8	NF.	HE	JNE .		HE	- 55	NF.	- 12	17	773			Committee of the Commit	5,704	- 15	(20,000)	250	-	1-14	18			931	
			SG NE	Sadin %	NE NE NE		29 29 3/8 8/3			JOS JAE JAE	201 201 201 201		%- 	26. 26.	77 22 23	1,9 25	2.5 2.5 2.5 2.5 2.5) /2 24 24	0.090	1.6	100,006	55 \$10 165	100000000000000000000000000000000000000	05 050 650 9270		1000	310	7,000 7,000 1827 4,000		990 4,800 931 7,600	

11

outpooligate yates and

One than elegablithesearch as less

K = Relatively in Intended Control (in the at

Friedrich - dist

SE- Na sar Koron

SE RELEABINED

SSE TO ApproxIVISE REFERENCES IN THE COMMITTEE OF SECURITIES AND DESCRIPTION OF SECURITIES AND CONTROL OF S

TABLE 7 SUMMARY OF WELL CONSTRUCTION DATA 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

Well	Date Completed	Installed By	Well Permit Number	Casing Diameter (inch)	Total Depth (feet bgs)	Screen Interval (feet bgs)	Slot Size (inch)	Well Elevation (feet)
MW-1 (a)	10/03/95	EAI	?	2	53	33 - 53	0.020	155.19
MW-1D	12/07/09	EAI	890007	2	80	60-80	0.020	154.93
MW-2	12/23/96	EAI	?	2	55	30 - 55	0.020	152.01
MW-3	06/30/09	EAI	9234	2	70	40-70	0.020	155.22
MW-4	06/30/09	EAI	9234	2	_ 80	50-80	0.020	155.07

Well elevation data based on Evans Land Surveying and Mapping survey (NAVD'88)

Bench Mark # Y-6668, Elevation = 155.530 ft. (2005 adj.)

(a) = Well abandoned on 12/07/09 and replaced by well MW-1D

1 of 1 XL:1576:1576WELLCONSTRUCTION

TABLE 8
SOIL GAS TESTING RESULTS - VOCs EPA METHOD 8260B
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in micrograms per liter - ug/L)

Sample ID	Date	Benzene	Toluenc	Ethylbenzene	Xylenes	Chloroform	CTC	TCE	PCE
A4@5'	02/23/09	0.26	<1.0	<0.50	<0.50	< 0.10	< 0.10	< 0.10	< 0.10
A4@15'	02/23/09	0.15	<1.0	< 0.50	<0.50	< 0.10	< 0.10	< 0.10	2.9
A4@15' D	02/23/09	0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	<0.10	2,4
A5@5'	02/23/09	< 0.10	<1.0	<0.50	< 0.50		< 0.10	<0.10	<0.10
A5@15'	02/23/09	<0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	< 0.10	2.4
B1@5'	02/24/09	<0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.18
B1@5' D	02/24/09	< 0.10	<1.0	< 0.50	< 0.50		< 0.10	< 0.10	0.10
B1@15'	02/24/09	<0.10	<1.0	<0.50	<0.50	<0.10	<0.10	0.15	6.6
B2@5'	02/24/09	0.11	<1.0	< 0.50	<0.50	<0.10	<0.10	< 0.10	0.47
B2@15'	02/24/09	<0.10	<1.0	<0.50	<0.50	<0.10	< 0.10	0.36	12
	T			!					
B3@5'	02/24/09	< 0.10	<1.0	<0.50	< 0.50	<0.10	<0.10	<0.10	0.34
B3@15'	02/24/09	<0.10	<1.0	< 0.50	<0.50	<0.10	< 0.10	0.59	14
DA OSI	00/00/00	40.10			-0.50	40.10	20.10	ح <u>۸</u> ۱۸	0.15
B4@5'	02/23/09	<0.10	<1.0	<0.50	<0.50		< 0.10	<0.10	0.17
B4@ <u>1</u> 5'	02/23/09	0.16	<1.0	<0.50	<0.50	<0.10	<0.10	0.59	9.4
D5@5!	02/24/09	<0.10		<0.50	<0,50	<0.10	< 0.10	<0.10	0.24
B5@5'	02/24/09	<0.10 <0.10	<1.0 <1.0	<0.50 <0.50	<0.50	<0.10	<0.10	0.10	9.3
B5@15	02/24/09	<0.10	~1.0	~0.30	<0.50	<0.10	~0.10	0.30	
B6@5'	02/24/09	<0.10	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	< 0.10
B6@15'	02/24/09	<0.10	<1.0	<0.50	<0.50		<0.10	0.41	5.4
D0(@15	02/24/05	-0.10	-1.0			40.10	30.10	0.71	
C1@5'	02/24/09	< 0.10	<1.0	<0.50	< 0.50	<0.10	<0,10	<0.10	0.46
C1@15'	02/24/09	<0.10	<1.0	<0.50	<0.50		<0.10	0.12	7.9
-	32.2 17 07	0.70		0.50		0,10			
C2@5'	02/24/09	< 0.10	<1.0	<0.50	< 0.50	<0.10	< 0.10	< 0.10	0.27
C2@15'	02/24/09	<0.10	<1.0	<0.50	<0.50		<0.10	0.35	5.8
C3@5'	02/24/09	< 0.10	<1.0	<0.50	<0.50	< 0.10	<0.10	<0.10	0.42
C3@15'	02/24/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	2.3	16
C4@5'	02/24/09	< 0.10	<1.0	<0.50	< 0.50	<0.10	< 0.10	<0.10	<0.10
C4@15'	02/23/09	< 0.10	<1.0	<0.50	<0.50	< 0.10	< 0.10	0.75	4.6
C4@15' D	02/23/09	< 0.10	<1.0	< 0.50	<0.50	< 0.10	< 0.10	0,75	4.7
C5@5'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.19
C5@15'	02/23/09	<0.10	<1.0	<0.50	<0.50	<0.10	<0.10	0.49	4.1
C6@5'	02/23/09	< 0.10	<1.0	<0.50	<0.50		<0.10	<0,10	< 0.10
C6@15'	02/23/09	<0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	0.34	2.2
	1 ·- ·				_ 				
D1@5'	02/23/09	< 0.10	<1.0	<0.50	<0.50		<0.10	< 0.10	0.19
D1@15'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	<0.10	2.4

XL:1576:SOft.GASDATA-82608 1 of 4

TABLE 8 SOIL GAS TESTING RESULTS - VOCs EPA METHOD 8260B 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670 (concentrations in micrograms per liter - ug/L)

Sample ID	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloroform	CTC	TCE	PCE
D2@5'	02/23/09	0.16	<1.0	<0.50	< 0.50	< 0.10	<0.10	< 0.10	<0.10
D2@15'	02/23/09	0.11	<1.0	<0.50	< 0.50	<0.10	<0.10	0.36	6.1
D3@5'	02/23/09	< 0.10	<1.0	< 0.50	<0.50		< 0.10	< 0.10	<0.10
D3@15'	02/23/09	< 0.10	<1.0	< 0.50	<0.50	< 0.10	<0.10	3.7	9.9
D4@5'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50		< 0.10	< 0.10	0.36
D4@15'	02/23/09	0.12	<1.0	<0.50	<0.50	< 0.10	0.12	3.1	17
D5@5'	02/23/09	0.15	<1.0	<0.50	<0.50		< 0.10	< 0.10	< 0.10
D5@15'	02/23/09	0.13	<1.0	<0.50	<0.50	< 0.10	0.17	0.67	4.0
76051	00/00/00			.0.501		10.10	-0.10	10.10	-0.10
D6@5'	02/23/09	0.14	<1.0	<0.50	<0.50		<0.10	<0.10	<0.10
D6@15'	02/23/09	0.12	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	0.50
E1 @51 (DV 1)	02/22/00	<0.10	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	0.15
E1@5' (PV 1)	02/23/09	<0.10	<1.0	< 0.50	<0.50	<0.10 <0.10	<0.10	<0.10	0.15
E1@5' (PV 3)		<0.10	<1.0	<0.50				<0.10	0.16
E1@5' (PV 7)	02/23/09	<0.10 0.11	<1.0	<0.50 <0.50	<0.50		<0.10	<0.10	6.8
E1@15'	02/23/09	0.11	<1.0	<0.30	<0.30	<0.10		<0.10	0.0
E2@5'	02/23/09	0.12	<1.0	<0.50	<0.50	< 0.10	<0.10	<0.10	< 0.10
E2@15'	02/23/09	<0.10	<1.0	< 0.50	< 0.50		<0.10	0.16	6.0
22-69.20	02.25.05	0.10							
E3@5'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	<0.10	< 0.10
E3@15'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	<0.10	<0.10	0.88
E4@5'	02/23/09	0.18	<1.0	<0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
E4@15'	02/23/09	< 0.10	1.0	0.65	3.22	0.15	0.12	1.7	5.8
E5@5'	02/23/09	0.13	<1.0	< 0.50	< 0.50		< 0.10	< 0.10	< 0.10
E5@15'	02/23/09	0.10	<1.0	<0.50	< 0.50	0.13	<0.10	0.45	0.8

Only those volatile organic compounds detected are listed

<= Not detected at laboratory reporting limit listed

D = Duplicate sample PV = Purge volume

CTC = Carbon Tetrachloride

TCE = Trichloroethene

PCE = Tetrachloroethene

2 of 4 XL:1576:SOJLGASDATA-8260B

TABLE 8
SOIL GAS TESTING RESULTS - VOCs EPA METHOD 8260B
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in micrograms per liter - ug/L)

Sample ID	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloroform	CTC	TCE	PCE
SOIL SAMPL	ES COLL	ECTED FI	ROM 5 FE	ET BGS		·			
A4@5'	02/23/09	0.26	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	<0.10	< 0.10
A5@5'	02/23/09	< 0.10	<1.0	< 0.50	<0.50	<0.10	<0.10	<0.10	< 0.10
B1@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.18
B1@5' D	02/24/09	<0.10	<1.0	< 0.50	< 0.50	<0.10	<0.10	< 0.10	0.10
B2@5'	02/24/09	0.11	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.47
B3@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.34
B4@5'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.17
B5@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.24
B6@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
C1@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.46
C2@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.27
C3@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.42
C4@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	< 0.10
C5@5'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.19
C6@5'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
D1@5'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.19
D2@5'	02/23/09	0.16	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
D3@5'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	<0.10
D4@5'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.36
D5@5'	02/23/09	0.15	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	< 0.10
D6@5'	02/23/09	0.14	<1.0	< 0.50	< 0.50	I I	< 0.10	< 0.10	< 0.10
E1@5' (PV 1)	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.15
E1@5' (PV 3)	02/23/09	<0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.16
E1@5' (PV 7)	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.14
E2@5'	02/23/09	0.12	<1.0	< 0.50	< 0.50	L	< 0.10	<0.10	< 0.10
E3@5'	02/23/09	<0.10	<1.0	< 0.50	< 0.50		< 0.10	< 0.10	<0.10
E4@5'	02/23/09	0.18	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
E 5 @5'	02/23/09	0.13	<1.0	< 0.50	< 0.50	<0.10	< 0.10	<0.10	< 0.10
No Com 1	- A1 1						- 201	201	
No. Sample			28	28	28		28	28	28
	Detections	8	0	0	0		0	0	15
Percentage	Detections	29	0	0	0	0	0	0	54
	Maximum	0.26	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	0.47

XL:1576:SOILGASDATA-8260B 3 of 4

TABLE 8
SOIL GAS TESTING RESULTS - VOCs EPA METHOD 8260B
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in micrograms per liter - ug/L)

Sample ID	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloroform	CTC	TCE	PCE
SOIL SAMPI	ES COLL	ECTED FR	ROM 15 F	EET BGS					
A4@15'	02/23/09	0.15	<1.0	<0.50	< 0.50	< 0.10	<0.10	< 0.10	2.9
A4@15' D	02/23/09	0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	2.4
A5@15'	02/23/09	< 0.10	<1.0	<0.50	< 0.50		<0.10	< 0.10	2.4
B1@15'	02/24/09	<0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	0.15	6.6
B2@15'	02/24/09	< 0.10	<1.0	<0.50	< 0.50		< 0.10	0.36	12
B3@15'	02/24/09	< 0.10	<1.0	< 0.50	<0.50	<0.10	< 0.10	0.59	14
B4@15'	02/23/09	0.16	<1.0	< 0.50	<0.50		< 0.10	0.59	9.4
B5@15'	02/24/09	<0.10	<1.0	< 0.50	< 0.50	<0.10	<0.10	0.56	9,3
B6@15'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50		<0.10	0.41	5.4
C1@15'	02/24/09	< 0.10	<1.0	<0.50	< 0.50		< 0.10	0.12	7.9
C2@15'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	0.35	5.8
C3@15'	02/24/09	< 0.10	<1.0	<0.50	< 0.50	<0.10	< 0.10	2.3	16
C4@15'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	0.75	4.6
C4@15' D	02/23/09	< 0.10	<1.0	<0.50	< 0.50	<0.10	< 0.10	0.75	4.7
C5@15'	02/23/09	<0.10	<1.0	<0.50	< 0.50	<0.10	< 0.10	0.49	4.1
C6@15'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	0.34	2.2
D1@15'	02/23/09	< 0.10	<1.0	< 0.50	<0.50	< 0.10	< 0.10	< 0.10	2.4
D2@15'	02/23/09	0.11	<1.0	<0.50	< 0.50	< 0.10	< 0.10	0.36	6.1
D3@15'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	3.7	9.9
D4@15'	02/23/09	0.12	<1.0	< 0.50	< 0.50		0.12	3.1	17
D5@15'	02/23/09	0.13	<1.0	<0.50	< 0.50		0.17	0.67	4.0
D6@15'	02/23/09	0.12	<1.0	<0.50	< 0.50		<0.10	<0.10	0.50
E1@15 ¹	02/23/09	0.11	<1,0	<0.50	< 0.50		< 0.10	< 0.10	6.8
E2@15'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	I _ L	<0.10	0.16	6.0
E3@15 ¹	02/23/09	<0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.88
E4@15'	02/23/09	< 0.10	1.0	0.65	3.22	0.15	0.12	1.7	5.8
E5@15'	02/23/09	0.10	<1.0	<0.50	< 0.50	0.13	< 0.10	0.45	0.8
	_								
No. Sample	s Analyz e d		27	27	27		27	27	27
	Detections	9	1	1	1	2	3	20	27
Percentage	Detections	33	4	4	4	7	11	74	100
	Maximum	0.16	1.0	0.65	3.22	0.15	0.17	3.7	17

XL:1576:SOILGASDATA-8260B 4 of 4

TABLE 9 SOIL GAS TESTING RESULTS - VOCs EPA METHOD TO-15 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670 (concentrations in micrograms per liter - ug/L)

Chemical	E3@5'	D6@15'	Trip Blank
Propene	0.230	0.021	< 0.010
Trichlorofluoromethane	< 0.005	0.011	< 0.005
Acetone	0.32	0.550	< 0.020
1,1-Dichloroethene	< 0.005	0.0059	< 0.005
Carbon Disulfide	0.036	0.001	< 0.005
1,1-Dichloroethane	< 0.005	0.0058	< 0.005
2-Butanone (MEK)	0.023	0.0091	< 0.005
Chloroform	< 0.005	0.024	< 0.005
Benzene	0.0061	0.0058	< 0.005
Carbon Tetrachloride	< 0.005	0.037	< 0.005
TCE	0.016	0.054	< 0.005
Toluene	0.057	0.051	< 0.005
PCE	0.140	0.240	< 0.005
Chlorobenzene	0.009	< 0.005	< 0.005
Ethylbenzene	0.015	0.011	< 0.005
Xylenes	0.077	0.063	< 0.005
1,2,4-Trimethylbenzene	0.017	0.0094	< 0.005
1,3,5-Trimethylbenzene	0.0058	< 0.005	< 0.005

1 of 1 XL:1576:SOILGASDATA-TO15

Only those volatile organic compounds detected are listed <= Not detected at laboratory reporting limit listed

TABLE 10
SUMMARY OF VOCs IN GROUND WATER BENEATH PILOT CHEMICAL AND PHIBRO-TECH, INC. SITES (concentrations in micrograms per liter - ug/L)

Well	Date	Chloroform	CTC	1,1-DCA	1,2-DCA	1,1-DCE	TCE	PCE	Benzene	Toluene	Ethylbenzene	Xylenes
Pilot Chemic	al Compa	ny										
MW-1	Apr-08	209J	ND	ND	_ 387	ND	ND	ND	ND	34,600	11,700	67,000
MW-2	Apr-08	450	ND	ND	3,160	ND	ND	ND	ND	62,500	9,000	44,900
MW-3	Apr-08	89.9	ND	ND	46.5J	ND	ND	_ND	ND	4,280	2,780	8,240
MW-4	Apr-08	ND	ND	ND	_1.90	ND	1.40	0.57	ND	ND	ND	ND
MW-5	Apr-08	25.5	36.5	ND	ND	0.288J	1.00	7.00	ND	ND	ND	ND
MW-6	Apr-08	15.9	14.1	ND	3.51	0.216J	1.23	3.67	ND	ND	ND	ND
MW-7	Apr-08	1.70	0.43J	ND	16.6	ND	1.40	0.90	ND	ND	ND	ND
MW-8	Apr-08	9.90	ND	ND	ND	ND	ND	1.40	ND	ND	ND	3.30
MW-9	Apr-08	13.7	ND	67	9.6	4.8	167	3.00	ND	ND	ND	ND
MW-10	Apr-08	19.5J	ND	ND	2,590	4.8	ND	ND	243	ND	ND	604
MW-11	Apr-08	1.8	0.065J	0.104J	1.80	0.067J	2.60	18.1	ND	ND	ND	ND
MA	XIMUM	450	36.5	67	3,160	4.8	167	18.1	243	62,500	11,700	67,000
Phibro-Tech	, Inc.											
MW-01D	Jul-08	ND	ND	ND	ND	2.40	34	ND	ND	ND	ND	ND
MW-01S	Jul-08	ND	ND	ND	ND	ND	6.70	4.50	ND	ND	ND	ND
MW-03	Jul-08	34	16	35	62	26	180	ND	ND	ND	730	88
MW-04	Jul-08	29	5.5	150	180		310	ND	_ ND	ND	ND	ND
MW-04A	Jul-08	5.50	ND	110	ND	9.70	68	1.90	ND	ND	ND	ND
MW-06B	Jul-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-06D	Jul-08	ND	ND	ND	ND	1.40	28	13	ND	ND	ND	ND
MW-07_	Jul-08	ND	ND	6.60	0.53	1.10	10	2.60	ND	ND	ND	ND
MW-09	Jul-08	35	ND	_ 78	21	24	110	6.50	ND	ND	ND	ND
MW-11	Jul-08	ND	ND	41	220	14	220	ND	ND	ND	500	ND
MW-14S	Jul-08	30	4.00	120	65	65	640	ND	ND	ND	ND	ND
MW-15D	Jul-08	ND	ND	ND	ND	ND	ND	1.60	ND	ND	ND	ND
MW-15S	Jul-08	5.40	ND	18	110	5.90	73	2.30	ND	ND	ND	ND
MW-16	Jul-08	ND	ND	88	3.60	12.00	26	2.40	ND	ND	ND	ND
MA	XIMUM	35	16	150	220	65	640	13	ND	ND	730	88

ND = Not detected CTC = Carbon tetrachloride 1,1-DCA = 1,1-Dichloroethane 1,2-DCA = 1,2-Dichloroethane 1,1-DCE = 1,1-Dichloroethene TCE = Trichloroethene PCE = Tetrachloroethene

XL:1576:OFFSITE-GW 1 of 1

TABLE 11
TOXICITY CRITERIA - HUMAN HEALTH SCREENING EVALUATION
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

	Chronic Inhalation Reference Dose	Inhalation Cancer Slope Factor
Chemicals of Concern	mg/m ³	(ug/m ³) ⁻¹
Benzene	3.0E-02	2.9E-05
Toluene	3.0E-01	NC
Ethylbenzene	1.0E+00	2.5E-03
Xylenes	1.0E-01	NC
1,3,5-Trimethylbenzene (1,3,5TMB)	6.0E-03	NC
1,2,4-Trimethylbenzene (1,2,4TMB)	6.0E-03	NC
Propene	3.0E+00	NC
Trichlorofluoromethane	7.0E-01	NC
Acetone	3.5E-01	NC
Carbon Disulfide	8.0E-01	NC
2-Butanone (MEK)	4.9E+00	NC
1,1-Dichloroethane (1,1-DCA)	5.0E-01	1.6E-06
1,1-Dichloroethene (1,1-DCE)	7.0E - 02	NC
Chlorobenzene	1.0E+00	NC_
Chloroform	3.0E-01	5.3E-06
Carbon Tetrachloride	4.0E-02	4.2E-05
Trichloroethlene (TCE)	6.0E-01	2.0E-06
Tetrachloroethene (PCE)	3.5E-02	5.9E-06

All values from DTSC's Screening Model Lookup Tables except Propene and Inhalation Slope Factor for Ethylbenzene from OEHHA Toxicity Database NC = Not a carcinogen

XL:1576:TABLE_TOX 1 of 1

TABLE 12
VAPOR INTRUSION HEALTH RISK EVALUATION USING SOIL GAS DATA
(MAXIMUM CONCENTRATIONS DETECTED) FROM 5 FEET
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

Maximum Concentration Detected Residential Land Use Commercial Land Use (ug/m^3) Cancer Risk Cancer Risk **Hazard Quotient** Chemical **Hazard Quotient** 1.7E-06 260 2.9E-06 7.3E-03 4.6E-03 Benzene 1.7E-04 9.9E-05 Toluene 57 NC NC Ethylbenzene 15 1.3E-08 1.2E-05 7.6E-09 7.1E-06 6.8E-04 77 NC 4.0E-04 Xylenes NC 1,3,5-Trimethylbenzene (1,3,5-TMB) 5.8 6.7E-04 4.0E-04 NC NC 1,2,4-Trimethylbenzene (1,2,4-TMB) NC 2.0E-03 NC 1.3E-03 17 Propene Not in Database 230 Not in Database 320 NC 1.1E-03 NC 6.6E-04 Acetone Carbon Disulfide 36 NC 5.5E-05 NC 3.0E-05 3.9E-06 2.3E-06 2-Butanone (MEK) 23 NC NC Chlorobenzene 9.0 NC 7.0E-06 NC 4.2E-06 6.7E**-**09 Trichloroethlene (TCE) 16 1.1E-08 2.2E-05 1.3E-05 5.5E-07 470 9.2E-07 2.7E-03 Tetrachloroethene (PCE) 6.2E-03 **Total Value** 3.8E-06 1.5E-02 2.3E-06 1.4E-02

NC= Not a Carcinogen

TABLE 13
VAPOR INTRUSION HEALTH RISK EVALUATION USING SOIL GAS DATA (MAXIMUM CONCENTRATIONS DETECTED) FROM 15 FEET 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

	Maximum Concentration Detected	Decidentie	l Land Use	Commercia	Il Land Use
Chemical	(ug/m ³)	Cancer Risk	Hazard Quotient	Cancer Risk	Hazard Quotient
Benzene	160	7.4E-07	2.0E-03	4.4E <u>-07</u>	_ 1.2E-03
Toluene	1,000	NC	1.2E-03	NC	7.3E-04
Ethylbenzene	650	2.3E-07	2.1E-04	1.3E-07	1.3E-04
Xylenes	3,220	NC	1.2E-02	NC	7.0E-03
1,2,4-Trimethylbenzene (1,2,4-TMB)	9.4	NC	4.2E-04	NC	2.5E-04
Propene	21	Not in I	Database	Not in I	Database
Trichlorofluoromethane	11	NC	5.8E-06	NC	3.4E-06
Acetone	550	NC	7.8E-04	NC	4.6E-04
Carbon Disulfide	1.0	NC _	6.1E-07	NC	3.6E-07
2-Butanone (MEK)	9.1	NC	3.8E-07	NC	6.3E-07
1,1-Dichloroethane (1,1-DCA)	5.8	1.3E-09	3.7E-06	7.6E-10	2.2E-06
1,1-Dichloroethene (1,1-DCE)	5.9	NC	3.2E-05	NC	1.9E-05
Chloroform	150	NC	2.1E-04	NC	1.3E-04
Carbon Tetrachloride	170	1.0E-06	1.4E-03	6.1E-07	8.5E-04
Trichloroethlene (TCE)	3,700	1.1E-06	2.1E-03	6.4E-07	1.2E-03
Tetrachloroethene (PCE)	17,000	1.3E-05	1.5E-01	8.0E-06	9.0E-02
	Total Value	1.6E-05	1.7E-01	9.8E-06	1.0E-01

NC = Not a Carcinogen

TABLE 14
VAPOR INTRUSION HEALTH RISK EVALUATION USING SOIL GAS DATA
(95% UCL FOR PCE AND MAXIMUM CONCENTRATIONS DETECTED) FROM 15 FEET
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

	Maximum Concentration				
	Detected	Residential Land Use		Commercial Land Use	
Chemical/Depth	(ug/m³)	Cancer Risk	Hazard Quotient	Cancer Risk	Hazard Quotient
Benzene	160	7.4E-07	2.0E-03	4.4E-07	1.2E-03
Toluene	1,000	NC	1.2E -0 3	NC	7.3E-04
Ethylbenzene	650	2.3E-07	2.1E-04	1.3E - 07	1.3E-04
Xylenes	3,220	NC	1.2E-02	NC	7.0E-03
1,2,4-Trimethylbenzene (1,2,4-TMB)	9.4	NC	4.2E-04	NC	2.5E-04
Propene	21	Not in Database		Not in Database	
Trichlorofluoromethane	11	NC	5.8E-06	NC	3.4E-06
Acetone	550	NC	7.8E-04	NC	4.6E-04
Carbon Disulfide	1.0	NC	6.1E-07	NC	3.6E-07
2-Butanone (MEK)	9.1	NC	3.8E-07	NC	6.3E-07
1,1-Dichloroethane (1,1-DCA)	5.8	1.3E-09	3.7E-06	7.6E-10	2.2E-06
1,1-Dichloroethene (1,1-DCE)	5.9	NC	3.2E-05	NC	1.9E-05
Chloroform	150	NC	2.1E -0 4	NC	1.3E-04
Carbon Tetrachloride	170	1.0E-06	1.4E-03	6.1E-07	8.5E-04
Trichloroethlene (TCE)	3,700	1.1E-06	2.1E-03	6.4E-07	1.2E-03
Tetrachloroethene (PCE) (1)	8,123	6.4E-06	7.2E-02	3.8E-06	4.3E-02
	Total Value	9.5E-06	9.2E-02	5.6E-06	5.5E-02

NC = Not a Carcinogen

1 of 1

^{(1) = 95%} UCL Concentration

FIGURES

Project No. 1576

Figure 1

Environmental Audit, Inc.

SITE PLAN 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

HISTORICAL MEDIA SAMPLING LOCATIONS,
EXCLUDING SOIL SAMPLES COLLECTED IN FEBRUARY 2009 (SEE FIGURE 5) AND SOIL GAS SAMPLES (SEE FIGURE 6)
11630 - 11700 Burke Street
Santa Fe Springs, CA 90670

BEA REMEDIAL EXCAVATIONS - AUGUST 2006 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

Project No. 1576 Figure 4

CROSS SECTION A-A' 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

EXPLANATION 12,330 0.51 Residual Hydrocarbon Left in Place That Exceed Los Angeles RWQCB Soil Screening Levels Excavated Soil Confirmation Soil Sample

ORGINAL IN COLOR

SAMPLE POINT LOCATIONS MAP - CONCRETE VAULTS 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

Figure 8

Project No. 1576

Figure 7 Project No. 1576

ORGINAL IN COLOR

SAMPLE POINT LOCATIONS MAP - CONCRETE VAULTS 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

0

Project No. 1576

Figure 8

120'

Environmental Audit, Inc.

SOIL GAS SAMPLING LOCATIONS 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

Project No. 1576

Figure 10

FX-9: Wells

SITE CONCEPTUAL MODEL

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

- PATHWAY IS CONSIDERED TO BE POTENTIALLLY COMPLETE
- PATHWAY IS CONSIDERED TO BE INCOMPLETE

FIGURE 12

ENVIRONMENTAL AUDIT, INC.

GROUND WATER ELEVATION MAP June 13, 2012 11630 to 11700 Burke Street Santa Fe Springs, CA 90609

PCE in Ground Water MW-1D and MW-4 11700 Burke Street, Santa Fe Springs, California

TCE in Ground Water MW-1D and MW-4 11700 Burke Street, Santa Fe Springs, California

PCE and TCE in Ground Water
MW-3
11700 Burke Street, Santa Fe Springs, Califonria

APPENDIX A

Ground Water Sampling Logs

Environmental Audit, Inc. ®

Planning, Environmental Analysis and Hazardous Substances Management and Remediation 1000 ORTEGA WAY, SUITE A (714) 632-8521 PLACENTIA, CA 92870-7125 FAX (714) 632-6754

DATE:	6/13/2012
PROJECT NO.:	1576
CLIENT: B	urke Street
WELL NO.;	MW-1D
WELL DIAMETER (INCH	HES): 2"
SAMPLED BY:	BHM

			EED B1. DOWN
	WELL PURG	ING INFOR	MATION
ONE CASING VOLU	ME OF WATER CALCULATED U	ISING THE FOLLOWI	NG: WELL VOLUME FACTORS WELL CASING ID VOLUME FACTOR
TOTAL DEPTH OF	DEPTH TO WATER	DEPTH TO FRE	
WELL (ft)	(ft bgs)	PRODUCT (ft. bg	
80	_ 52.59	_	4.0 0.65
			6.0 1.47
		27.4/ x	0.16 = 4.39
	-		ELL VOLUME ONE CASING VOLUME
			FACTOR OF WATER (GALLONS)
PURGE TIME (hrs):	START 10:18	FINISH	
	To the		
METHOD: DOV	VN HOLE PUMP X DEDIC	CATED PUMP	BAILER OTHER
TYPE/MODEL:	Grundfos		
CALLONO TE	L COMPLICATION	TI TINDI	DUNY DEMANUS
1,000,000	MP CONDUCTIVITY (µS/cm)	pH TURBI (NT	
2 7/	4 1108	6.96 153	
	0 1238	699 70	
6 70	- 10 mm M	6.97 160	
	5 1260	6.98 74.	
0 70	1200	D.10 /1.	0
	WELLCAMD	LING INFO	OMATION
	WELL SAMP	LING INFO	RIVIATION
TIME SAMPLED (h	rs): 11/05		
1 marion 200		A MEDIA DY IR AN	DAY ED W
	VN HOLE PUMP DEDIC	CATED PUMP	BAILER X OTHER
TYPE/MODEL:	Voss Technologies		
COMMENTS:			
COMMENTS.			

Environmental Audit, Inc. ®

Planning, Environmental Analysis and Hazardous Substances Management and Remediation 1000 ORTEGA WAY, SUITE A (714) 632-8521 PLACENTIA, CA 92870-7125 FAX (714) 632-6754

DATE:	6/13/2012
PROJECT NO.:	1576
CLIENT: Burke St	reet
WELL NO.:	MW-2
WELL DIAMETER (INCHES):	2"
SAMPLED BY:	ВНМ

WELL PURGING INFORMATION						
ONE CASING VOLUME	OF WATER CALCULATED	USING THE FO		WELL VOLUM		
TOTAL DEPTH OF WELL (ft)	DEPTH TO WATER (ft bgs) 38.13-		H TO FREE	L CASING ID (INCHES) 2.0 4.0 6.0	0.16 0.65 1.47	
		16.88	X O 16 WELL VOI FACTO	LUME ONE	2.70 CASING VOLUME ATER (GALLONS)	
PURGE TIME (hrs):	START 17:32	FINIS	SH			
METHOD: DOWN I	HOLE PUMP DEDI	CATED PUM	P BAILE	R X OTH	ER	
TYPE/MODEL:	PVC					
GALLONS TEMP PURGED (°F)	CONDUCTIVITY (µS/cm)	pН	TURBIDITY (NTU)	REN	1ARKS	
2 7/9	8 2547	6.64	167			
4 72	4 2856	6-63	833			
				NO ENGLE		
	WELL SAMP	LING II	NFORMA	TION		
TIME SAMPLED (hrs):	14:15					
METHOD: DOWN I	HOLE PUMP DEDI	CATED PUM	P BAILE	RX OTH	ER	
TYPE/MODEL:	Voss Technologies					
COMMENTS:						

Environmental Audit, Inc. ®

Planning, Environmental Analysis and Hazardous Substances Management and Remediation 1000 ORTEGA WAY, SUITE A (714) 632-8521 PLACENTIA, CA 92870-7125 FAX (714) 632-6754

DATE:	6/13/2012
PROJECT NO.:	1576
CLIENT: Burke S	Street
WELL NO.:	MW-3
WELL DIAMETER (INCHES):	2"
SAMPLED BY:	BHM

WELL PURGING INFORMATION WELL VOLUME FACTORS ONE CASING VOLUME OF WATER CALCULATED USING THE FOLLOWING: WELL CASING ID **VOLUME FACTOR** TOTAL DEPTH OF DEPTH TO WATER DEPTH TO FREE (INCHES) 2.0 0.16 WELL (ft) (ft bgs) PRODUCT (ft. bgs) 4.0 0.65 69.5 6.0 1.47 17.09 X 2.73 0.16 WELL VOLUME ONE CASING VOLUME FACTOR OF WATER (GALLONS) PURGE TIME (hrs): START 17:10 FINISH DOWN HOLE PUMP X DEDICATED PUMP OTHER METHOD: BAILER TYPE/MODEL: Grundfos TEMP CONDUCTIVITY REMARKS **GALLONS** pΗ TURBIDITY PURGED (NTU) (°F) (µS/cm) 6.88 954 1040 6 90 611 1082 75.3 6 40.2 WELL SAMPLING INFORMATION TIME SAMPLED (hrs): 13:55 DOWN HOLE PUMP DEDICATED PUMP BAILER X OTHER METHOD: TYPE/MODEL: Voss Technologies COMMENTS:

Environmental Audit, Inc. @

Planning, Environmental Analysis and Hazardous Substances Management and Remediation 1000 ORTEGA WAY, SUITE A (714) 632-8521 PLACENTIA, CA 92870-7125 FAX (714) 632-6754

DATE:	6/13/2012
PROJECT NO.;	1576
CLIENT: Burke S	Street
WELL NO.:	MW-4
WELL DIAMETER (INCHES):	2"
SAMPLED BY:	BHM

WELL PURGING INFORMATION

WELLT OROMO INFORMATION
ONE CASING VOLUME OF WATER CALCULATED USING THE FOLLOWING: WELL VOLUME FACTORS WELL CASING ID VOLUME FACTOR
TOTAL DEPTH OF DEPTH TO WATER DEPTH TO FREE (INCHES) WELL (ft) (ft bgs) PRODUCT (ft. bgs) 2.0 0.16 80 55.41 \sim 4.0 0.65 6.0 1.47 WELL VOLUME ONE CASING VOLUME
PURGE TIME (hrs): START 50 FINISH OF WATER (GALLONS)
METHOD: DOWN HOLE PUMP X DEDICATED PUMP BAILER OTHER
TYPE/MODEL: Grundfos
CALLONS TEMP CONDUCTIVITY pH TURBIDITY REMARKS
TIME SAMPLED (hrs): 13. 45
METHOD: DOWN HOLE PUMP DEDICATED PUMP BAILER X OTHER TYPE/MODEL: Voss Technologies
COMMENTS:

APPENDIX B

Chain of Custody Record and Laboratory Reports

1214 E. Lexington Avenue, Pomona, CA 91766 Tol (909) 590-5905 Fax (909) 590-5907

Date: June 21, 2012

Mr. Brent Mecham
Environmental Audit, Inc.
1000 Ortega Way, Suite A
Placentia, CA 92870-7162
(714)632-8521 Fax(714)632-6754

Project: 1576 / Burke Street
Lab I.D.: 120614-38 through -41

Dear Mr. Mecham:

The analytical results for the water samples, received by our laboratory on June 14, 2012, are attached. The samples were received chilled, intact, and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice President/Program Manager

Ardy Wang) Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A

Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street DATE RECEIVED: 06/14/12
MATRIX: WATER DATE EXTRACTED: 06/15/12

MATRIX: WATER

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/20/12

DATE REPORTED: 06/21/12

C11-C22 HYDROCARBONS

METHOD: EPA 8015B

UNIT: ug/L = MICROGRAM PER LITER = PPB

Method Blank		ND ND	1
MW-2	120614-41	ND .	1
MW-1D	120614-40	,ND	1
MW-3	120614-39	ND	<u> </u>
MW-4	120614-38	ND	1
SAMPLE I.D.	LAB I.D.	C11-C22 RESULT	DF

PQL

-500

COMMENTS

C11-C22 = DIESEL RANGE

PQL = PRACTICAL QUANTITATION LIMIT

DF = DILUTION FACTOR

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAN DETECTION LIMIT

Data Reviewed and Approved by:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907

8015B QA/QC Report

Date Analyzed:

6/20/2012

Units: ug/L (PPB)

Matrix:

Water/Liquid

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.: 120620-LCS 1/2

Analyte	SŘ	spk conc	MS	%MS	MSD	%MSD	_%RPD	ACP %MS	ACP RPD
C11-C22 RANGE	0	150000	125000	83%	119000	79%	5%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP
C11-C22 RANGE	12000	12500	104%	75-125

Analyzed and Re	eviewed by:	Z(
Final Reviewer: ,	0		

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED:06/14/32

DATE SAMPLED: 06/13/12

DATE ANALYZED: 06/15/12

REPORT TO: MR. BRENT MECHAM DATE REPORTED: 06/21/12

C4-C10 HYDROCARBONS

METHOD: EPA 5030B/8015B

UNIT: uq/L = MICROGRAM PER LITER = PPB

SAMPLE I.D.	LAB I.D.	C4-C10 RESULT	DF
MW-4	120614-38	ND	1
MW-3	120614-39	ND	1
MW-1D	120614-40	ND	<u> </u>
MW-2	120614-41	ND	1
Method Blank		ND	1
	PQL	50.0	

COMMENTS

C4-C10 = GASOLINE RANGE

PQL = PRACTICAL QUANTITATION LIMIT

DF = DILUTION FACTOR

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by: _

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

Gas/BTEX(8015B/8021B) QC

Date Analyzed:

6/15/2012

Units:

ug/L (PPB)

Matrix:

WATER/VAPOR

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.:

120615-LCS1/2

Analyte	s.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %REC	ACP %RPD
Gasoline Range	0	500	592	118%	587	117%	1%	75-125	<20%
Benzene	0	50.0	54.1	108%	60.3	121%	11%	75-125	<20%
Toluene	0	50.0	55.7	111%	59.2	118%	6%	75-125	<20%
Ethylbenzene	0	50.0	56.6	113%	58.6	117%	4%	75-125	<20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP
Gasoline Range	500	543	109%	75-125
Benzene	50.0	53.4	107%	75-125
Toluene	50.0	54.4	109%	75-125
Ethylbenzene	50.0	52.5	105%	75-125

Į									
Surrogate Recovery	ACP %REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	120614-38	120614-39	120614-40			120615-6	
BFB	70-130	103%	108%	115%	106%	110%	102%	101%	
						/			

Surrogate Recovery	ACP %REC	%REC							
Sample I.D.									
BFB	70-130								

Surrogate Recovery	ACP %REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.						
BFB	70-130					

S.R. = Sample Result

* = Surrogate fail due to matrix interference (If marked)

spk conc = Spike Concentration

Note: LCS, MS, MSD are in control therefore results are in control.

%REC = Percent Recovery

ACP %RPD = Acceptable Percent RPD Range

ACP %REC = Acceptable Percent Recovery Range

Analyzed and Reviewed By:

Final Reviewer:

1214 E. Lexington Avenue, Pomona, CA 91765 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12 DATE ANALYZED: 06/14&18/12

REPORT TO: MR. BRENT MECHAM

DATE SAMPLED: 06/13/12

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-4

LAB I.D.: 120614-38

TOTAL METALS ANALYSIS

UNIT: mg/L = MILLIGRAM PER LITER = PPM

ELEMENT	SAMPLE			EPA
ANALYZED	RESULT	PQL	DF	METHOD
Chromium(Cr)	0.014	0.01	Э.	200.7
Chromium VI (Cr6)	0.0047	0.0002	1	218.6

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

Data Reviewed and Approved by:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

DATE ANALYZED: 06/14&18/12

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-3 LAB I.D.: 120614-39

TOTAL METALS ANALYSIS

UNIT: mg/L = MILLIGRAM PER LITER = PPM

ELEMENT ANALYZED	SAMPLE RESULT	PQĹ	DF	EPA METHOD
Chromium(Cr)	0.019	0.01	1	200.7
Chromium VI (Cr6)	0.0118	0.0002		218.6

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

Data Reviewed and Approved by:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 l'ax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc.

1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

DATE ANALYZED: 06/14&18/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-1D

LAB I.D.: 120614-40

TOTAL METALS ANALYSIS

UNIT: mg/L = MILLIGRAM PER LITER = PPM

ELEMENT	SAMPLE		EPA	
ANALYZED	RESULT	bÖr	DF	METHOD
Chromium (Cr)	ND	0.01	1	2 0 0.7
Chromium VI (Cr6)	0.006	0.0002	1	218.6

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection limit or non-detected

Data Reviewed and Approved by:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A. Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER DATE SAMPLED:06/13/12 REPORT TO: MR. BRENT MECHAM

DATE RECEIVED:06/14/12 DATE ANALYZED: 06/14&18/12 DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-2 LAB I.D.: 120614-41

TOTAL METALS ANALYSIS

UNIT: mg/L = MILLIGRAM PER LITER = PPM

ELEMENT	SAMPLE			EPA
ANALYZED	RESULT	PQL	DF	METHOD
Chromium(Cr)	ND	0.01	1	200.7
Chromium VI (Cr6)	0.0057	0.0002	J.	218.6

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF

ND = Below the Actual Detection limit, or non-detected

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tol (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12 DATE ANALYZED: 06/14&18/12

DATE SAMPLED: 06/13/12
REPORT TO: MR. BRENT MECHAM

DATE REPORTED:06/21/12

METHOD BLANK FOR LAB I.D.: 120614-38 THROUGH -41

TOTAL METALS ANALYSIS

UNIT: mg/L = MILLIGRAM PER LITER = PPM

· ·				
ELEMENT ANALYZED	SAMPLE RESULT	PQL	DF	EPA METHOD
Chromium(Cr) Chromium VI (Cr6)	ИD	0.01 0.0002	<u>1</u>	200.7 218.6

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection limit or non-detected

Data Reviewed and Approved by:_

QA/QC for TTLC Metals Analysis -- WATER MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANALYSIS DATE: 6/18/2012

Unit: mg/L(ppm)

Analysis	Spk.Sample BATCH ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	MS	% Rec	MSD	% Rec	% RPD
Chromium(Cr)	120615-31	1.00	102	PASS	0	1.00	1.02	102%	1.03	103%	1%
Copper(Cu)	120615-31	1.00	97	PASS	0	1.00	1.05	105%	1.05	105%	0%
Zinc(Zn)	120615-31	1.00	104	PASS	0.056	1.00	1.05	99%	1.06	100%	1%

ANALYSIS DATE.: 6/13/2012

Analysis	Spk.Sample BATCH ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	Ms	% Rec	MSD	% Rec MSD	% RPD
Mercury (Hg)	120612-10	0.00250	96	PASS	0	0.00250	0.00210	84%	0.00210	84%	0%

MS/MSD Status:

Analysis	%MS	%MSD	%LCS	%RPD
Chromium(Cr)	PASS	PASS	PASS	PASS
Copper(Cu)	PASS_	PASS	PASS	PASS
Zinc(Zn)	PASS	PASS	PASS_	PASS
Mercury (Hg)	PASS	PASS	PASS_	PASS :
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0 ~ 20

ANALYST:

FINAL REVIEWER:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

QA/QC Report for Chromium, Hexavalent (Cr⁶⁺)

Analysis Method:

EPA 218.6

Analysis Date:

6/1<u>8/2012</u>

Matrix Type: Water

Conc. Unit: µg/L

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spike Sample ID:	120618-LCS1/2
Sample Result	0.000
Spike Conc.	5.00
MS	4.32
%MS	86%
MSD	4.42
%MSD	88%
%RPD	2%
ACP %MS	75~125%
ACP %RPD	0~20%

Pass

Pass

Pass

LCS STD Recovery

Spike Conc.	5.00
LCS	4.38
%LCS	88%
ACP %LCS	85~115%

Pass

Analyzed/Reviewed by _________

(A)

)___

Final Reviewed by

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER
DATE SAMPLED: 06/13/12
REPORT TO: MR. BRENT MECHAM

DATE RECEIVED: 06/14/12
DATE ANALYZED: 06/14-15/12
DATE REPORTED: 06/21/12

EPA 5030B/8260B FOR FUEL OXYGENATES
UNIT: ug/L = MICROGRAM PER LITER = PPB

SAMPLE		ETBE	DIPE	MTBE	TAME	TBA	DF
I.D.	LAB I.D.						
MW-4	120614-38	ND	ND	ND	ND_	ND_	1
MW-3	120614-39	ND	<u>N</u> D	ND	ND	ND	1
MW-1D	120614-40	ND	ND	ND	ND	ND	1
MW-2	120614-41	ND	ND	ND	ND	ND	1
Method Bla	nk	מאַ	כנמ	NĎ	ND	ND	1
	PQL	5.00	5.00	3.00	5.00	50,0	

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

ETBE = ETHYL tert-BUTYL ETHER

DIPE = ISOPROPYL ETHER

MTBE = METHYL tert-BUTYL ETHER

TAME = TERT-AMYL METHYL ETHER

TBA = TERTIARY BUTYL ALCOHOL

Data Reviewed and Approved by:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-4 LAB I.D.: 120614-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND _	1
BROMOCHLOROMETHANE	ND	1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK)	ND	10
N-BUTYLBENZENE	ND ,	11
SEC-BUTYLBENZENE	ND	1
TERT-BUTYLBENZENE	ND	11
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	11
CHLOROBENZENE	ND	1.
CHLOROETHANE	ND	<u> </u>
CHLOROFORM	ND	1,
CHLOROMETHANE	ND	1
2-CHLOROTOLUENE	ND	11
4-CHLOROTOLUENE	ND	11
DIBROMOCHLOROMETHANE	ND	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	11
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	1
1,3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	1
DICHLORODIFLUOROMETHANE	ND	1
1.1-DICHLOROETHANE	ND	<u> </u>
1,2-DICHLOROETHANE	ND	11
1,1-DICHLOROETHENE	ND	1.
CIS-1,2-DICHLOROETHENE	ND	1
TRANS-1,2-DICHLOROETHENE	ND]
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1
TO BE	CONTINUED ON PAGE #2	- u - i, c,

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-4 LAB I.D.: 120614-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2
UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
2.2-DICHLOROPROPANE	ди	1
1,1-DICHLOROPROPENE	ND	1
CIS-1,3-DICHLOROPROPENE	ND	1
TRANS-1, 3-DICHLOROPROPENE	ИD	1
ETHYLBENZENE	NĎ	<u> </u>
2-HEXANONE	ND	10
HEXACHLOROBUTADIENE	ND	1
ISOPROPYLBENZENE	ND	1
4-ISOPROPYLTOLUENE	ND	11
4-METHYL 2-PENTANONE (MIBK)		10
METHYL tert-BUTYL ETHER (MTBE)	ND	3
METHYLENE CHLORIDE	ND	<u> </u>
NAPHTHALENE	ND	1
N-PROPYLBENZENE	ND	1
STYRENE		1
1,1,1,2-TETRACHLOROETHANE	ND	1
1,1,2,2-TETRACHLOROETHANE	ND	<u> </u>
TETRACHLOROETHENE (PCE)	6.25	1
TOLUENE	ND	1
1,2,3-TRICHLOROBENZENE	ДИ	I
1,2,4-TRICHLOROBENZENE	<u>ND</u>	1
1,1,1-TRICHLOROSTHANE	ND	11
1,1,2-TRICHLOROETHANE	<u>N</u> D	<u> </u>
TRICHLOROETHENE (TCE)	1.04	1
TRICHLOROFLUOROMETHANE	ND	1
1,2,3-TRICHLOROPROPANE	ND	<u>1</u>
1,2,4-TRIMETHYLBENZENE	ND	<u> </u>
1,3,5-TRIMETHYLBENZENE	ND	<u> </u>
VINYL CHLORIDE	ND	11
M/P-XYLENE	ND	2
O-XYLENE		11

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-3 LAB I.D.: 120614-39

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND_	10
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK)	ND	_10
N-BUTYLBENZENE	ND	11
SEC-BUTYLBENZENE	ND	1
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	NĎ	5
CARBON TETRACHLORIDE	ND	11
CHLOROBENZENE	ND	1
CHLOROETHANE_	ND	<u>l</u>
CHLOROFORM	ND	1
CHLOROMETHANE	ND	1
2-CHLOROTOLUENE	ND	1
4-CHLOROTOLUENE	ND	11
DIBROMOCHLOROMETHANE	ND	1,
1,2-DIBROMO-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	11
DIBROMOMETHANE	ND	1
1, 2-DICHLOROBENZENE	ND	. 1
1,3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	כוֹא	1
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	ND	1
1,1-DICHLOROETHENE	ND	11
CIS-1,2-DICHLOROETHENE	ND	1
TRANS-1, 2-DICHLOROETHENE	ND	1
1,2-DICHLOROPROPANE	ND	1
1.3-DICHLOROPROPANE	ND o	1

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-3 LAB I.D.: 120614-39

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
2,2-DICHLOROPROPANE	ND	1
1,1-DICHLOROPROPENE	ND	1
CIS-1, 3-DICHLOROPROPENE	ND	11
TRANS-1,3-DICHLOROPROPENE	ND	1
ETHYLBENZENE	ND	1
2-HEXANONE	ND	10
HEXACHLOROBUTADIENE	ND	1
ISOPROPYLBENZENE_	ND	1,
4-ISOPROPYLTOLUENE	ND	1
4-METHYL-2-PENTANONE (MIBK)	ND	10,
METHYL tert-BUTYL ETHER (MTBE)	ND	3
METHYLENE CHLORIDE	ND	5
NAPHTHALENE	ND	1
N-PROPYLBENZENE	ND	1
STYRENE	ND	1
1,1,1,2-TETRACHLOROETHANE	ND	11
1,1,2,2-TETRACHLOROETHANE	ND.	1
TETRACHLOROETHENE (PCE)	3.17	1
TOLUENE	ND	1
1,2,3-TRICHLOROBENZENE	ND	1
1,2,4-TRICHLOROBENZENE	ND	1
1,1,1-TRICHLOROETHANE	ND	1
1,1,2-TRICHLOROETHANE	ND	1
TRICHLOROETHENE (TCE)	2.09	1
TRICHLOROFLUOROMETHANE	ND	1
1,2,3-TRICHLOROPROPANE	ND	1
1,2,4-TRIMETHYLBENZENE	<u>N</u> D	1
1,3,5-TRIMETHYLBENZENE	ND	1
VINYL CHLORIDE	ND	11
M/P-XYLENE	ND	2
O-XYLENE	ND I IMIT	1

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-1D LAB I.D.: 120614-40

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	10
BENZENE	ND	11
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK)	ND	10
N-BUTYLBENZENE	ND	1
SEC-BUTYLBENZENE	ND	11
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	11
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	1
CHLOROFORM	1.98	1
CHLOROMETHANE	ND.	. 1
2-CHLOROTOLUENE	ND	1
4 - CHLOROTOLUENE	ND	1
DIBROMOCHLOROMETHANE	ND	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	11
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ЙD	1
1,3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	11
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	ND	1
1,1-DICHLOROETHENE	ND	11
CIS-1,2-DICHLOROETHENE	ND	l
TRANS-1, 2-DICHLOROETHENE	ND	1
1,2-DICHLOROPROPANE	ND	11
1,3-DICHLOROPROPANE	ND .	1

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-1D LAB I.D.: 120614-40

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
2,2-DICHLOROPROPANE	NID	1
1,1-DICHLOROPROPENE	ND	1
CIS-1,3-DICHLOROPROPENE	ND	1
TRANS-1,3-DICHLOROPROPENE	ND	11
ETHYLBENZENE	ND	1
2-HEXANONE	ND	1.0
HEXACHLOROBUTADIENE	ND	1
ISOPROPYLBENZENE	ND	1
4-ISOPROPYLTOLUENE	ND	11
4-METHYL-2-PENTANONE (MIBK)	ND	10
METHYL tert-BUTYL ETHER (MTBE)	ND	3
METHYLENE CHLORIDE	ND	5
NAPHTHALENE	ИД	11
N-PROPYLBENZENE	ND	11
STYRENE	ND	1
1,1,1,2-TETRACHLOROETHANE	ND	11
1,1,2,2-TETRACHLOROETHANE	ND	1,
TETRACHLOROETHENE (PCE)	2.98	1
TOLUENE	ND	1
1,2,3-TRICHLOROBENZENE	ND	1
1,2,4-TRICHLOROBENZENE	ND	1
1,1,1-TRICHLOROETHANE	ND	1
1,1,2-TRICHLOROETHANE	ND	1
TRICHLOROETHENE ('TCE)	1.51	1
TRICHLOROFLUOROMETHANE	NĎ	11
1,2,3-TRICHLOROPROPANE	ND	1
1,2,4-TRIMETHYLBENZENE	ND	1
1,3,5-TRIMETHYLBENZENE	<u>N</u> D	1
VINYL CHLORIDE	MD	1
M/P-XYLENE	ND	2
O-XYLENE	ND	1

COMMENTS POL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, СА 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-2 LAB I.D.: 120614-41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND	_ 1
BROMOCHLOROMETHANE	ND_	1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK)	ND	10
N-BUTYLBENZENE	ND	1
SEC-BUTYLBENZENE	ND	1
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	1
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	1
CHLOROFORM	ND	11
CHLOROMETHANE	ND	1
2-CHLOROTOLUENE	ND	1 ,
4-CHLOROTOLUENE	ND	1
DIBROMOCHLOROMETHANE	ND	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	1
1,3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	1
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	ND	1
1,1-DICHLOROETHENE	ND	1
CIS-1, 2-DICHLOROETHENE	ND	1
TRANS-1, 2-DICHLOROETHENE	ND	1
1,2-DICHLOROPROPANE	ND	1.
1,3-DICHLOROPROPANE	ND ND	1

---- TO BE CONTINUED ON PAGE #2 ----

//0/

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

SAMPLE I.D.: MW-2 LAB I.D.: 120614-41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
2,2-DICHLOROPROPANE	ND	1,
1,1-DICHLOROPROPENE	ND	11
CIS-1,3-DICHLOROPROPENE	ND	1
TRANS-1, 3-DICHLOROPROPENE	ND	1
ETHYLBENZENE	ND	1
2-HEXANONE	ND	10
<u>HEXACHLOROBUTADIENE</u>	ND	<u> </u>
<u> ISOPROPYLBENZENE</u>	ND	1
4-ISOPROPYLTOLUENE	ND	11
4-METHYL-2-PENTANONE (MIBK)	ND	0
METHYL tert-BUTYL ETHER (MTBE)	ND	3
METHYLENE CHLORIDE	ND	5
NAPHTHALENE	ND	1
N-PROPYLBENZENE	ND	1
STYRENE	ND	1
1,1,1,2-TETRACHLOROETHANE	ND ND	11
1,1,2,2-TETRACHLOROETHANE	ND	1,
TETRACHLOROETHENE (PCE)	6.15	11
TOLUENE	ND	<u> </u>
1,2,3-TRICHLOROBENZENE	<u>ND</u>	1
1,2,4-TRICHLOROBENZENE	<u> </u>	<u> </u>
1,1,1-TRICHLOROETHANE	<u>N</u> D	1
1,1,2-TRICHLOROETHANE	ND	1
TRICHLOROETHENE (TOE)	NDND	
TRICHLOROFLUOROMETHANE	ND	1
1,2,3-TRICHLOROPROPANE	ND	1
1,2,4-TRIMETHYLBENZENE	ND	<u> </u>
1,3,5-TRIMETHYLBENZENE	ND	1
VINYL CHLORIDE	ND	1
M/P-XYLENE	ND	2
O-XYLENE	ND	1

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentía, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

METHOD BLANK FOR LAB I.D.: 120614-38 THROUGH -41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK)	ND	10
N-BUTYLBENZENE	ND	1
SEC-BUTYLBENZENE_	ND	11
TERT-BUTYLBENZENE	ND	11
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	1
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	11_
CHLOROFORM	NDND	1
CHLOROMETHANE	ND	1
2-CHLOROTOLUENE	ND	1
4-CHLOROTOLUENE	ND	11
DIBROMOCHLOROMETHANE	ND	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	1
1,3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	1
<u>DICHLORODIFLUOROMETHANE</u>	ND	1
1,1-DICHLOROETHANE	ND	11
1,2-DICHLOROETHANE	ND	1
1,1-DICHLOROETHENE	ND	1
CIS-1, 2-DICHLOROETHENE	ND	1
TRANS-1, 2-DICHLOROETHENE	ND	1
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1,

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:

Environmental Audit, Inc. 1000 Ortega Way, Suite A Placentia, CA 92670-7125

(714) 632-8521 Fax (714) 632-6754

PROJECT: 1576 / Burke Street

MATRIX: WATER

DATE RECEIVED: 06/14/12

DATE SAMPLED: 06/13/12

REPORT TO: MR. BRENT MECHAM

DATE REPORTED: 06/21/12

METHOD BLANK FOR LAB I.D.: 120614-38 THROUGH -41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2
UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
2,2-DICHLOROPROPANE	ND	1
1,1-DICHLOROPROPENE	ND	1
CIS-1,3-DICHLOROPROPENE	ND	1
TRANS-1, 3-DICHLOROPROPENE	ND	1,
ETHYLBENZENE	ND	1
2-HEXANONE	ND	10
HEXACHLOROBUTADIENE	ND	1
ISOPROPYLBENZENE	ŊD	1
4-ISOPROPYLTOLUENE	ND	11
4-METHYL-2-PENTANONE (MIBK)	ND	_10
METHYL tert-HUTYL ETHER (MTBE)	מא	3
METHYLENE CHLORIDE	ND ND	5
NAPHTHALENE	ND	1
N-PROPYLBENZENE	ND	1
STYRENE	ND	11
1,1,1,2-TETRACHLOROETHANE	ND	1
1,1,2,2-TETRACHLOROETHANE	ND	1
TETRACHLOROETHENE (PCE)	ND	1
TOLUENE	ND	<u> </u>
1,2,3-TRICHLOROBENZENE	ND	<u> </u>
1,2,4-TRICHLOROBENZENE	ND	1
1,1,1-TRICHLOROETHANE	ND	1
1,1,2-TRICHLOROETHANE	ND	<u> </u>
TRICHLOROETHENE (TCE)	ND	1
TRICHLOROFLUOROMETHANE	ND	1_
1,2,3-TRICHLOROPROPANE	ND	<u> </u>
1,2,4-TRIMETHYLBENZENE	ND	11_
1,3,5-TRIMETHYLBENZENE	ND	1
VINYL CHLORIDE	ND	1
M/P-XYLENE	ND	2
O-XYLENE	ND	1

COMMENTS POL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

6/14-15/2012

Machine:

В

Matrix:

Water/Liquid

Unit:

ug/L (PPB)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.: 120614-LCS1/2

Opinion outlibio Eup libit	120017 200112													
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD					
Benzene	0	25.0	30,5	122%	28.5	114%	8%	75-125	0-20					
Chlorobenzene	0	25,0	30.4	122%	29.2	117%	5%	75-125	0-20					
1,1-Dichloroethene	0	25.0	23.9	95%	23.5	94%	2%	75-125	0-20					
Toluene	0	25.0	30.2	121%	30.6	122%	1%	75-125	0-20					
Trichloroethene (TCE)	0	25.0	28.1	112%	27.4	110%	2%	75-125	0-20					

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	25.0	29.4	117%	75-125
Chlorobenzene	25.0	28.8	115%	75-125
Chloroform	25.0	30.2	121%	75-125
1,1-Dichloroethene	25.0	30.4	122%	75-125
Ethylbenzene	25.0	30.3	121%	75-125
o-Xylene	25.0	30.2	121%	75-125
m,p-Xylene	50.0	59.1	118%	75-125
Toluene	25.0	28.9	116%	75-125
1,1,1-Trichloroethane	25.0	29.5	118%	75-125
Trichloroethene (TCE)	25.0	26.1	104%	75-125

				-			1		
Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	120614-38	120614-39	120614-40	120614-41	120614-45	
Dibromofluoromethane	25,0	70-130	125%	130%	113%	114%	121%	120%	
Toluene-d8	25.0	70-130	108%	107%	111%	111%	110%	110%	
4-Bromofluorobenzene	25.0	70-130	74%	74%	80%	82%	72%	72%	
				-					
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.					-1				
Dibromofluoromethane	25.0	70-130							
Toluene-d8	25.0	70-130							
4-Bromofluorobenzene	25.0	70-130							
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.									
Dibromofluoromethane	25.0	70-130							
Toluene-d8	25.0	70-130							
4-Bromofluorobenzene	25.0	70-130							,

^{* =} Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

Page	r	of	1
	-		

E	Envi	ronn	<u> 1en</u>	tal Audit	<u>, I</u>	<u>n</u>	<u>).</u>	®			C	ha	iin	of C	ust	ody	/ Record		
	Planning, E	nvironme	ital Ana	lysis and Hazardous							SAN	//PLIN	IG RE	QUIREME	NTS: F	RCRAE	NPDES SDWA		
		_		Remediation							WRJ	TTEN	1 QC R	EPORT	EDS	Υ.	ES■ NO□		
	1000 ORTI			, ,							lı .		e QC ■		TURN	AROU	ND TIME:		
		PLACENTIA, CA 92870-7162 FAX (714) 63					532-6754 j					RWQCB QC□			SAME	DAY	☐ 24hr ☐ 48 hr ☐ NORMAL ■		
PROJECT NO.	PROJEC"	PROJECT NAME:					CONTR ANA					ALYSIS REQUESTED					REMARKS		
1576	•		Burke	Street	Γ	T	П	\Box		1					7-	2	* Must include oxygenates		
SAMPLER: (Sign	nature)	- · · · · ·	PROJ	ECT MANAGER:	\neg					1	اوا					墨			
Bn	lada			Brent Mecham			TUBE	5M	SM	n. 200.7	ie. 218.6		İ			NUMBER OF CONTAINERS			
e de la companya de l		j			93	PLASTIC	BRASS/SS 7	-C 80	TPH-D 8015M 8260B*	Total Chrom.	Нех Сһготе.					BEROF	•		
X SAMPLE NUMB	ER DATE	TIME	COMP	SAMPLE DESCRIPTION	03 V 10	PLA	BRA	TPH	TPH-D 8	Tota	Fex					NOW.			
38 MW-4	9/3/12	(3:45		Water		1/		//	$A\!\!\!\!/$							5	3 VOAs, 1 liter amber, 500 ml plastic		
20MW 3		13:55		1	1	4/			47	1/	1/1					15			
1 MW-12	5 1	14:65	1/		1	1/		Ä	1/	17	1/					5			
WMW. 2		14:15	1/		/	7/		7	17	1/	1		Ţ		ļ	5		_	
-1 (-1							1	1											
								1											
																		Ī	
													_OF C	AL NUMBI ONTAINE	D.C	20			
FACILITY NAME GLOBAL ID						ED BY: (Signature)				DATE Ø 14	TEME /(2 0-35	RECEIVED BY: (Signature)	_						
Pat	souras Propert	y		T10000000614				RELI	NQUE	SHE	D BY:	(Sign	nature)		DATE	TIME	RECEIVED BY: (Signature)		
SAMPLES SHIP! FedEx UPS UPS Hand	I Airborne □		S	HIPPED BY: (Signature)				cou	RIER:	(Sig	nature) ~^					OR BY: (Signature) DATE/TIME	1360	